摘要:重力波(GWS)是子午线和上层平流层中子午倾覆循环的关键驱动因素之一。他们在气候模型中的表示遭受了不足的分辨率和对其参数化的有限约束。这种掩盖了对气候变化中中大气环流变化的评估。This study presents a comprehensive analysis of stratospheric GW activity above and downstream of the Andes from 1 to 15 August 2019, with special focus on GW representation ranging from an unprecedented kilometer- scale global forecast model (1.4 km ECMWF IFS), ground-based Rayleigh lidar (CORAL) observations, modern reanaly- sis (ERA5), to a coarse-resolution climate model (EMAC).与ERE5相比,发现Zonal GW动量(GWMF)的分辨垂直浮标(GWMF)的强度至少为2-2.5。与IFS中解决的GWMF相比,ERA5和EMAC的选址继续产生60 8 s的过度GWMF极点,从而在已解决的GWMF和参数化的GWMF之间产生明显的差异。在IFS和ERA5中对GW Pro Files的类似验证验证了相似的波结构。,即使在; 1公里的分辨率,IFS中的解析波弱于LIDAR观察到的波。此外,跨数据集的GWMF估计值表明,基于温度的代理基于线性GWS的中频近似,由于简化的GWMF和GW波长估计的数据高估了GWMF。总体而言,该分析为参数化验证提供了GWMF基准,并要求三维GW参数化,更好的上限处理和垂直分辨率随着模型中水平分辨率的增加而增加,以进行更现实的GW分析。
摘要:本研究使用ERE5重新分析的SST数据集重新网格重新网格,该数据集具有0.25°×0.25◦历史(1940- 2014年)的空间分辨率(纬度×经度)为0.25°×0.25◦(1940- 2014年),并预测(2015-2100)期。SSP5-8.5场景下的SST模拟是通过八个通用循环模型(GCM)的输出进行的。使用历史(1940- 2015年)和Future(2030-2100)时期的经验分位数映射(EQM)开发了偏置校正的数据集,同时评估了CMIP6模型模拟的每月5个月度观察到的CMIP6模型仿真,以观察到几内亚景点的温度的重新分析数据。总体而言,基于SSP5-8.5的CMIP6模型在2030 - 20100年的未来模拟场景表明,对于几内亚墨西哥湾,SST的预计将增加4.61℃,从2030年的31℃增加到2030年的31℃至2100°C,并在2.6°C in the Western Gog(Sahel)。基于Linux的NCVIEW,雪貂和CDO(气候数据运算符)软件包用于执行进一步的数据重新网格,并评估有关数据的统计功能。此外,ArcGI被用于开发输出图,以可视化GCM的历史和未来输出的空间趋势。相关系数(R)用于评估CMIP6模型的性能,分析显示访问0.1,CAMS CSM 0.2,CSM 0.3,CMCC 0.3和MCM 0.4,表明所有模型在捕获SSTS的气候模式方面都表现出色。CMIP6偏置校正的模型模拟表明,在远处,GOG上的SST变暖会高于近期气候情况。这项研究确认,CMIP6预测可用于与气候和水文影响研究有关的多种评估以及在变暖气候下的缓解措施的制定。
图1:澳大利亚季节性降雨区。中位年降雨量(基于1900年至1999年的100年期)和季节性降雨的发生(与5月至10月相比,11月至4月的降雨量比中位降雨的比率)用于识别六个主要区域;夏季主导(潮湿的夏季,干燥的冬季),夏季(潮湿的夏季,低冬季降雨),统一(无晴朗的季节性),冬季(潮湿的冬季,低夏降雨),冬季占主导地位(潮湿的冬季,干燥的夏季)和干旱(低降雨)。来源:气象局http://www.bom.gov.au/jsp/ncc/climate_averages/climate-classifications/index.jsp。2图2:1900年至2022年之间的新南威尔士州和澳大利亚首都地区的年降雨量。1961 - 1990年之间的平均降雨量为556.2mm。资料来源:气象局; http://www.bom.gov.au/climate/ 3图3:2000年至2019年之间的4月至10月的降雨十分位于1900年至2019年的整个降雨记录。注意最近的湿年(2020,2021,2022)不包括在内。来源:http://www.bom.gov.au/state-of-the-climate/。4图4:高分辨率(季节性 - 年分辨率)氢气候(降雨和/或温度)代理的位置。来源:Steiger等。24 5图5:在1000至2000 CE之间的每105年期间干燥,中性和潮湿年的比例。来源:Flack等。21 6图6:天气尺度天气的示意图和气候变化模式,对于新南威尔士州的降雨至关重要。来源:气象局。来源:https://takvera.blogspot.com/2014/01/warming-may-spike-when-pacific-decadal.html。8图8:过去2000年的IPO时间赛。a)扩展法律圆顶IPO重建和Buckley等。43 IPO重建,从1300年至2011年,b)过去2000年。 黑线是使用Folland索引的观察性IPO。 来源:Vance等人42 9图9:LaNiña和ElNiño事件期间的平均步行者循环模式,海面温度和降雨反应的示意图。 11图10:ENSO与澳大利亚降雨的关系。 每个季节的南部振荡指数与澳大利亚降雨量之间的相关性a)DJF-夏季,b)妈妈 - 秋天,c)jja -jja -winter,d)儿子 - 春天。 仅显示95%水平的相关性。 数据周期:1889年至2006年。 来源:Risbey等5。 12图11:在开始阶段的Niño4指数与中太平洋埃尔尼诺事件和东太平洋厄尔尼诺事件的成熟阶段之间的皮尔逊相关系数。 来源:Freund等人61 13图12:在IOD正期和负面事件期间,平均步行者循环模式,海面温度和降雨响应的示意图。 来源:气象局。 16图13:南环模式。 a)南半球的年平均地面风,显示了极地伊斯特利,南极北部南大洋的中纬度西风腰带以及沿澳大利亚东部海岸线的东南贸易风。 使用ERE5 87重新分析表面风(10m)创建的数字。 来源:Hendon等。43 IPO重建,从1300年至2011年,b)过去2000年。黑线是使用Folland索引的观察性IPO。来源:Vance等人42 9图9:LaNiña和ElNiño事件期间的平均步行者循环模式,海面温度和降雨反应的示意图。11图10:ENSO与澳大利亚降雨的关系。每个季节的南部振荡指数与澳大利亚降雨量之间的相关性a)DJF-夏季,b)妈妈 - 秋天,c)jja -jja -winter,d)儿子 - 春天。仅显示95%水平的相关性。数据周期:1889年至2006年。来源:Risbey等5。12图11:在开始阶段的Niño4指数与中太平洋埃尔尼诺事件和东太平洋厄尔尼诺事件的成熟阶段之间的皮尔逊相关系数。来源:Freund等人61 13图12:在IOD正期和负面事件期间,平均步行者循环模式,海面温度和降雨响应的示意图。来源:气象局。16图13:南环模式。a)南半球的年平均地面风,显示了极地伊斯特利,南极北部南大洋的中纬度西风腰带以及沿澳大利亚东部海岸线的东南贸易风。使用ERE5 87重新分析表面风(10m)创建的数字。来源:Hendon等。赤道膨胀和中纬度西风带(由蓝色和红色箭头指示)的极点收缩的变异性以SAM为特征。b)季节性马歇尔山姆指数。来源:https://climatedataguide.ucar.edu/climate-data/marshall-southern-nular-annular-mode-mode-sam-index-station-17图14:SAM对澳大利亚每日降雨的影响。每个澳大利亚季节正面和负SAM(SAM+减去SAM-)之间的每日降雨(阴影)和850-HPA风(向量)差异。在每个面板的右上列出了SAM的正和负阶段的天数。仅在复合每日异常与95%水平的零差异显着不同的情况下提供阴影。89 18图15:使用Marshall指数,代表代表印度洋偶极子的ElniñoSouthern振荡和偶极模式指数(DMI)的Marshall指数,海洋Niño指数(ONICNIño指数(ONI))的季节平均指数。年对应于十二月。*注意MAM图是年 + 1(例如MAM 2009代表2010年3月至5月的时期)。改编自Udy等人。82 21图16:东海岸旋风子类型。左 - 旋风簇轨道。右 - 第75个百分点降雨。来源:Gray等。115 22
