关于 ITRC 州际技术与监管委员会 (ITRC) 成立于 1995 年,是一个由州领导的全国性联盟,成员来自大约 40 个州和哥伦比亚特区的环境监管机构、三个联邦机构、部落以及公众和行业利益相关者。该组织致力于减少障碍,并加快州际部署更好、更具成本效益的创新环境技术。ITRC 是州环境研究所 (ERIS) 的一个委员会,ERIS 是一个 501(c)(3) 公共慈善机构,通过其旨在改善美国环境的教育和研究活动为州环境委员会 (ECOS) 提供支持,并为州环境政策制定者提供一个论坛。有关 ITRC 及其可用产品和服务的更多信息,请访问互联网 www.itrcweb.org。免责声明本文档旨在帮助监管机构和其他机构制定一致的方法,以评估、监管批准和在特定地点部署特定技术。尽管我们认为本文件中的信息是可靠和准确的,但本文件及其中列出的所有材料均不提供任何明示或暗示的保证,包括但不限于对文件中所含信息的准确性或完整性的保证。任何信息或指导的技术含义均不包含在内。
• 推出 OSD 出口业务 - Eris AMD 工厂正在等待欧盟 - 第四季度的 GMP 和 ANVISA 检查 • 推出 EU-CDMO(注射剂)业务 • 目标受众 - 欧洲大型制药公司和大型仿制药公司 • 商业模式 - 在欧盟销售的 3 - 5 年制造合同 - 高客户粘性和较低的价格敏感度 • 我们的价值主张 - “唯一一家获得欧盟批准的拥有全套注射剂型的印度注射剂企业”
2023 年 1 月 12 日 致:2021 级项目 2021 级完成通知 亲爱的 2021 级项目开发者: 谨通知您,所有剩余的 2021 级项目开发者都已接受各自的项目成本分配并按要求发布了安全保障。因此,截至 2023 年 1 月 11 日,2021 级的决策/结算流程已完成。 根据纽约独立系统运营商开放接入输电费率附件 S 第 25.5.10.3 节,纽约独立系统运营商特此在本通知附件 A 中提供每个完成 2021 级项目的项目成本分配和授予的能源资源互连服务 (ERIS) 和容量资源互连服务 (CRIS) 的 MW 的最终计算。1 如果您有任何疑问,请通过电子邮件将这些问题提交至 InterconnectionSupport@nyiso.com。 真诚的,
在Ea rth上只有很大的含量,富含营养,以至于它们可以在长时间内提供高作物产量,并没有任何受精。在最有利的ca ses中,施肥是由自然proce sses进行的,因为它与尼罗河ri ri ve r一起进行。通常,相反的情况是真实的,即,通过农作物的g rowth有so ilis hm的含义。过去,通过将动物和嗡嗡声和在现代用化学肥料施加到土地上以及近代的浪潮来满足对少生或营养的需求。如果土地不断耕种,则来自La nd任何区域的食品的连续产量必须降低,并且这些营养物质不得延长。受精可获得HI GH作物产量和高质量的产品。
SARS-COV-2 OMICRON XBB子变量有效地逃避了先前感染或疫苗接种的免疫力,需要适应疫苗。在这里,我们分析了适应疫苗的免疫原性BNT162B2 Omicron XBB.1.5,该疫苗目前用于增强疫苗。增强疫苗接种显着增加了抗尖峰IgG,并伴随着识别wuhan和Omicron XBB.1.5 Spike变体的交叉反应性记忆B细胞的扩展。几何平均中和滴度相对于XBB.1.5,XBB.1.16和XBB.2.3,以及针对Eg.5.5.1和BA.2.86的交叉反应响应相对于前增强前滴度显着增加。最后,武汉和XBB的数量1.5峰值反应性IFN-γ产生的T细胞在促进疫苗接种后显着增加。In summary, BNT162b2 Omicron XBB.1.5 vaccination resulted in potent neutralizing antibody responses against Omicron XBB variants, including the recent Omicron variants EG.5.1 (Eris) and BA.2.86 (Pirola), as well as XBB.1.5 reactive T cell responses, suggesting that booster vaccination will augment protection against these emerging变体。
NUTIC.t.:014' 危急且 Ut:t:LJNING-STATUS FOK 2023 f;RAPHTf' C.OMMTTNTCATTONS NATIONAi,PF:NSTON FTJND 特此通知您,2023 年 7 月 28 日,图形通信国家养老金基金(“计划”或“NPF”)的精算师 1 向美国国税局(“IRS”)以及 NPF 的计划发起人(NPF 的受托人委员会)证明,NPF 处于“危急状态”。截至 2023 年 5 月 1 日,该计划处于危急状态。此外,根据联邦法律和适用法规,由于该计划已根据《美国救援计划法案》从养老金福利担保公司 (PBGC) 获得特别财政援助 (SFA),因此无论其资金状况如何,该计划都将被视为处于危急状态,直至 2051 年 4 月 30 日。此证明还通知 IRS,该计划正在按计划完成其通过的康复计划的要求。根据 ERIS A 第 305(b)(3) 节和国内税收法典 (IRC) 第 432(b)(3) 节,此证明已提交给 IRS。本通知仅供您参考。您无需回应或采取任何其他行动来响应本通知。
意大利罗马罗马大学口腔颌面科学系。 *通讯作者。 Outpatients Clinics Department, Casa di Cura Villa Montallegro, Via Montezovetto 27, Genoa, 16132, Italy: gio.cip@libero.it † Members of the Study Group on AIT & Vaccinations: Paolo Borrelli, Corrado Castagneto, Giuseppina Manzotti, Gianenrico Senna, Maria Angiola Crivellaro, Mona-Rita Yacoub, Marina Russello, Silvia Peveri, Diego Peroni, Oliviero Rossi, Eleonora Nucera, Marcello Zambito, Leonardi Salvatore, Ignazio La Mantia, Catello Romano, Anna Volterrani, Franco Frati, Enrico Compalati, Francesca Silvestri, Young Hyo Kim, Dong-Ho Nahm, Patrick Yong, Daniel Blagojevic, Lourdes Rodriguez Rios, Manuel Branco Ferreira, Elsa Caiado, Susana Piedade, José Geraldo Dias, Marcia Quaresma, Fatima Praça, Ana Paula Aguiar、Paulo Guimarães、Mira Xhixha、Mirela Hitai、Sandra Xhani、Eris Mesonjesi、Antonio Valero、David González de Olano、Pedro Ojeda、Ignasio García、Laia Ferré、José Maria Vega、Tanja Fahrenhorst、Wolfram Schaefer、Alexandra Fontaine、Ann-Christin Grimmelt、Thiemo Kurzweg、Dagmar Kurzen、Nicole Kröger、Armin Mechkat、Athanasios Xanthopoulos 完整作者信息列表可在文章末尾查看
直接聚变驱动器 (DFD) 是一种核聚变发动机,可为任何航天器产生推力和电力。它是一种紧凑型发动机,基于 D-3He 无中子聚变反应,使用普林斯顿场反转配置进行等离子体约束,并使用奇偶校验旋转磁场作为加热方法实现聚变。推进剂是氘,它被聚变产物加热,然后膨胀到磁喷嘴中,产生排气速度和推力。根据任务要求,单个发动机的功率范围可以在 1 - 10 MW 之间,并且能够实现 4 N 至 55 N 的推力,具体取决于所选功率,比冲约为 10 4 s。在这项工作中,我们介绍了使用这种发动机到达和研究太阳系外边界的可能性。目标是在不到 10 年的时间内,携带至少 1000 公斤的有效载荷,前往柯伊伯带及更远的海王星外天体 (TNO),如矮行星鸟神星、阋神星和鸟神星,从而可以执行从科学观测到现场操作等各种任务。所选的每个任务剖面图都尽可能简单,即所谓的推力-滑行-推力剖面图,为此,每个任务分为 3 个阶段:i. 从低地球轨道逃离地球引力的螺旋轨迹;ii. 行星际旅行,从离开影响区到滑行阶段结束;iii. 机动与矮行星会合。图中给出了每次机动的推进剂质量消耗、初始和最终质量、速度和 ∆ V。轨迹分析针对两种情况进行:简化场景,其中 TNO 在黄道平面上没有倾斜,真实场景,其中考虑了真实的倾斜角。此后,研究了多种场景,以达到 125 AU,以便研究太阳磁层的外部边界。我们的计算表明,由 DFD 推进的航天器将在有限的时间内以非常高的有效载荷与推进剂质量比探索太阳系的外部边界,开辟前所未有的可能性。
大脑中不规则的电活动会导致人的行为、运动、感官体验和对周围环境的意识发生深刻而暂时的变化(Nasiri 和 Clifferd,2021 年)。在早期阶段识别和治疗癫痫对患有这种疾病的人来说可以带来关键而有价值的变化。头皮脑电图 (EEG) 是一种测量大脑电活动的非侵入性技术,是诊断癫痫的广泛使用的补充检查(Liang 等人,2020 年)。在癫痫发作期间,患者的脑电图将显示出明显的异常模式(Staba 等人,2014 年)。医生可以通过检查脑电图来帮助确定是否发生癫痫。然而,审查长期脑电图需要医生投入大量的时间和精力。因此,开发自动癫痫检测算法至关重要(Si 等人,2023 年)。研究人员正积极致力于开发利用脑电图数据自动检测癫痫发作的方法。从最初使用硬件电路的尝试到后来利用时域信息和基于阈值的方法进行癫痫发作检测。后续发展涉及使用频域特征和提取时频特征(Xia 等人,2015 年)进行癫痫发作检测。自引入以来,深度学习模型在计算机视觉任务中比手动提取的特征更具弹性(Chen 等人,2024 年)、语音识别(Eris and Akbal,2024 年)和自然语言处理(Luo 等人,2024 年)。因此,利用深度学习技术自动使用脑电图信号检测癫痫发作已显示出在做出最合适和最快临床决策方面具有重大前景(Ahmad 等人,2023 年)。近几年来,各种深度学习模型已用于癫痫发作检测,包括循环神经网络(Tuncer 和 Bolat,2022 年)、生成对抗网络(Rasheed 等人,2021 年)、深度神经网络(Liu 和 Richardson,2021 年)、分层神经网络(Hu 等人,2021 年)和卷积神经网络。这些模型取得了令人鼓舞的结果(Kaur 等人,2022 年)。卷积网络在逐像素进行端到端训练后,性能得到了进一步提升。随着全卷积网络 (FCN) 的引入,神经网络设计可以处理不同大小的输入,并通过高效的推理和学习机制产生相应大小的输出(Chou 等人,2023 年)。然而,FCN 尚未广泛应用于癫痫发作检测。同时,以往的深度学习算法往往忽略了不同通道对分类任务的贡献,导致模型的可解释性有限。针对上述问题,本文提出了一种基于深度学习的独立癫痫检测算法。算法可以从多通道脑电图数据中自主提取时间和空间信息,从而能够精确识别不同患者的癫痫发作事件。本文做出了几个关键贡献,包括:λ 提出了一种结合 SE(挤压和激励)模块的 CNN 模型检测算法。该方法已在 CHB-MIT 数据集上进行了评估,并取得了优异的性能。λ 首次将 FCN 模型中的上采样方法应用于癫痫发作检测,通过利用反卷积实现,将降尺度的图像从
热场复偶(TFD)是反德西特/共形场论(AdS/CFT)对应关系中的一种特殊状态[1],它将 D + 1 维反德西特空间中的假定量子引力理论与维度 D 边界上的共形场论联系起来。黑洞发射热辐射[2],实际上在外部留下一个热密度矩阵。以色列[3]指出,通过考虑热场复偶可以重现可观测量的计算,类似于史瓦西几何的最大延伸。后来,马尔达西那[4]在 AdS/CFT 的背景下推测,边界 CFT 的 TFD 应该对应于 AdS 中永恒的双面黑洞。存在于相差一维的理论之间的对偶性这种想法通常被称为全息论。为了检验这种二元性,考虑可穿越虫洞现象是很有趣的,这是 AdS/CFT 的一个惊人预测。从引力的角度来看,黑洞两侧的边界显然不能因果通信。虽然有一个空间虫洞连接两个外部区域,但人们无法穿越它而不落入黑洞奇点。如果爱丽丝和鲍勃在对立面,他们就无法相遇,除非他们一起跳进黑洞。Gao、Jafferis 和 Wall [ 22 ] 的最新进展表明,两种边界理论的特定耦合会产生负能量冲击,使 TFD 状态下的虫洞可穿越。换句话说,鲍勃可以与爱丽丝团聚而不会被吸入黑洞。作为此协议以及 AdS/CFT 中许多其他思想实验的起点,人们假设可以访问 TFD 状态。一个很有前途的用于探测 AdS/CFT 的量子力学系统是 Sachdev-Ye-Kitaev (SYK) 模型 [5,6]。例如,它在低能下表现出共形对称性,其动力学由 Schwarz 作用量支配 [7]。相同的作用量支配着一种被称为 Jackiw-Teitelboim 引力的二维量子引力理论 [8,9]。此外,它已被证明会在低温下使混沌界限饱和,这也是黑洞最大扰乱的标志 [10,11]。在参考文献 [12] 中,作者在近 AdS2 中构造了永恒可穿越虫洞解,并表明两个耦合 SYK 模型的低能极限具有相同的作用量。一个关键结果是,他们表明 SYK 模型的 TFD 可以很好地通过具有小相互作用的双边哈密顿量的基态来近似。在本研究中,我们考虑了在噪声中尺度量子 (NISQ) [ 13 ] 设备上准备 SYK 模型的 TFD 的状态的任务。参考文献 [ 14 ] 中考虑了准备任意理论的 TFD 的更一般任务。同样,该策略是构建一个哈密顿量,其基态编码了 TFD 结构。虽然方程中的哈密顿量文献 [ 12 ] 中的 (3.21) 可以看作文献 [ 14 ] 中构造的略微特殊版本,我们将在本文中使用它,因为它相对简单。这两种方法都考虑使用辅助浴将系统绝热冷却到基态。在这里,我们采用变分法,从参数可调的量子电路假设开始。这样就不需要辅助系统了。类似的方法曾用于构造 Ising 模型的 TFD [ 15 ]。简而言之
