背景:如果治疗不当,超广谱 β-内酰胺酶 (ESBL) 正在成为常见的院内病原体,并且是导致死亡和发病的重要原因。当务之急是找到有效的治疗方案来对付产生 ESBL 的细菌。本研究旨在评估超广谱 β-内酰胺酶的产菌对四环素类药物的体外敏感性模式。方法:这项描述性横断面研究在拉瓦尔品第国立科技大学陆军医学院微生物学系进行了 6 个月。本研究纳入了 78 个非重复分离株。使用 Jarlier 等人的方法进行 ESBL 检测。然后使用改良的 Kirby Bauer 纸片扩散法测试四环素类药物(如四环素、强力霉素、米诺环素和替加环素)的体外敏感性。在孵育期结束后测量抑菌圈,并根据 CLSI 和 FDA 指南进行解释。结果:分离株中大肠杆菌约占56.4%,肺炎克雷伯菌约占28.2%,肠杆菌属约占10.26%,产酸克雷伯菌和不动杆菌属各占2.6%。ESBLs对替加环素最敏感,对米诺环素的敏感性次之,对强力霉素和四环素的敏感性最差。结论:在四环素类中,替加环素对产ESBL的革兰氏阴性杆菌体外敏感性最好。关键词:超广谱β-内酰胺酶(ESBLs),四环素,敏感性
EXBLIFEP 含有头孢吡肟和恩美唑巴坦。头孢吡肟是一种第四代头孢菌素,具有广谱杀菌活性,可对抗革兰氏阴性和革兰氏阳性病原体,并获准用于治疗多种感染,包括单纯性尿路感染、慢性尿路感染和肾盂肾炎、腹腔内感染和肺炎。头孢吡肟通常对 C 类 AmpC 和 D 类 OXA-48 酶的水解稳定。恩美唑巴坦是一种新型两性离子青霉烷酸砜 β-内酰胺酶抑制剂 (BLI),对多种广谱 β-内酰胺酶 (ESBL) 具有强效活性,而这些酶通常会对第三代和第四代头孢菌素产生耐药性。尽管结构上与他唑巴坦相似,但恩美唑巴坦由于三唑环的 N-甲基化而表现出增强的抗 ESBL 活性。
血液感染(BSI)是由抗菌抗菌(AMR)革兰氏阴性菌(GNB)引起的,是发病率和死亡率的重要原因。第三代头孢菌素(3GC)多年来一直用作BSI和其他侵入性感染的经验治疗;但是,它们的过度使用可以促进扩展的光谱β-乳乳糖酶(ESBLS)的出现。 因此,这项研究旨在确定流行病学,临床和微生物学特征,以及抗菌耐药性对赞比亚卢萨卡一家推荐医院BSI结果的影响。 这是在赞比亚卢萨卡的一家转诊医院进行的六个月前瞻性研究。 作为常规诊断和患者护理的一部分,从发烧的患者中收集了细菌培养的血液样本,并使用Vitek 2紧凑型仪器进行了病原体鉴定和抗菌敏感性测试。 使用聚合酶链反应方法确定 ESBL和质粒介导的喹诺酮抗性(PMQR)相关基因。 使用结构化数据收集表收集患者信息,并在CSPRO 7.6中输入。 在Whonet和Stata版本14中分析了数据。 总共分离了88个GNB,其中76%为肠杆菌,14%的鲍曼尼杆菌和8%的铜绿假单胞菌。 对第三代和第四代头孢菌素的抵抗力分别为75%和32%。 值得注意的是,侵入性经验治疗,碳青霉烯耐药性(7%),多药耐药性(83%)和ESBL产生剂(76%)的高患病率(68%)。 与e相比。第三代头孢菌素(3GC)多年来一直用作BSI和其他侵入性感染的经验治疗;但是,它们的过度使用可以促进扩展的光谱β-乳乳糖酶(ESBLS)的出现。因此,这项研究旨在确定流行病学,临床和微生物学特征,以及抗菌耐药性对赞比亚卢萨卡一家推荐医院BSI结果的影响。这是在赞比亚卢萨卡的一家转诊医院进行的六个月前瞻性研究。作为常规诊断和患者护理的一部分,从发烧的患者中收集了细菌培养的血液样本,并使用Vitek 2紧凑型仪器进行了病原体鉴定和抗菌敏感性测试。使用聚合酶链反应方法确定 ESBL和质粒介导的喹诺酮抗性(PMQR)相关基因。使用结构化数据收集表收集患者信息,并在CSPRO 7.6中输入。在Whonet和Stata版本14中分析了数据。总共分离了88个GNB,其中76%为肠杆菌,14%的鲍曼尼杆菌和8%的铜绿假单胞菌。对第三代和第四代头孢菌素的抵抗力分别为75%和32%。值得注意的是,侵入性经验治疗,碳青霉烯耐药性(7%),多药耐药性(83%)和ESBL产生剂(76%)的高患病率(68%)。与e相比。大肠杆菌是BSI的病因,感染鲍曼尼杆菌(OR = 3.8)的患者的死亡几率明显更高。在接受3GC的患者中,死亡的几率也更高。
越来越多的证据表明,人类活动可能导致自然环境中细菌抗菌素耐药性基因 (ARG) 的流行率增加。许多环境研究已经使用下一代测序方法对宏基因组进行测序。然而,这种方法是有限的,因为它不能识别出不同的未表征基因或展示活性。环境宏基因组中的 ARG 表征对于了解耐药性的演变和传播非常重要,因为有几个临床上重要的耐药性基因源自环境物种的例子。本研究采用功能宏基因组方法来检测污水污泥、污泥改良土壤、受季铵化合物 (QAC) 影响的芦苇床沉积物和受影响较小的长期管理草地土壤中编码对超广谱 β -内酰胺类 (ESBLs) 和卡巴培南类药物耐药性的基因。在污水污泥、污泥改良土壤和 QAC 影响土壤中检测到了 ESBL 和碳青霉烯酶基因,它们与临床上重要的 β -内酰胺酶基因具有不同程度的同源性。对侧翼区域进行了测序,以确定潜在的宿主背景和遗传背景。在革兰氏阴性菌中发现了新的 β -内酰胺酶基因,其中一个与插入序列相邻的基因是 Pme1,这表明最近发生了动员事件和/或未来存在转移的可能性。污水污泥和富含季铵化合物 (QAC) 的工业废水似乎会传播和/或选择在长期管理的草地土壤中未检测到的 ESBL 基因。这项工作证实了自然环境是新型和可动员抗性基因的储存库,可能对人类和动物健康构成威胁。
如今,细菌中的抗生素耐药性已成为一个全球问题。 因此,在选择更有效的治疗溶液中,鉴定细菌菌株引起了特别的关注。 抗药性最常见的机制之一是鲍曼尼杆菌杆菌酶的产生。 本研究旨在通过表型和分子方法检测碳纤维烯酶产生菌株,用于2021年6月至2022年6月之间在Dezful的Ganjavian医院收集的临床标本中。。如今,细菌中的抗生素耐药性已成为一个全球问题。因此,在选择更有效的治疗溶液中,鉴定细菌菌株引起了特别的关注。抗药性最常见的机制之一是鲍曼尼杆菌杆菌酶的产生。本研究旨在通过表型和分子方法检测碳纤维烯酶产生菌株,用于2021年6月至2022年6月之间在Dezful的Ganjavian医院收集的临床标本中。timicrobial易感性测试,而使用CEFTAZIDIME和CEFTAZIDIME /CLAVAVAZIPIMIMIMIMIMIC ADIPEN和IMIPENIP和IMIPSICEN和IMIPEN IMIIPEN和IMIPEN IMIPEN和IMIPEN IMIIPEN和IMIPEN IMIIPEN和IMIPEN IMIPCEN和IMIPEN,将扩展的β-内酰胺酶(ESBLS)和金属近似群(MBLS)进行了延长的谱。 分别。BLA IMP,BLA SPM,BLA OXA-23和BLA OXA-24,BLA OXA-58的分子检测进行了Bla oxa-58。总共54个菌株,与米诺环素相比(13%)相比,头孢菌素的最高电阻率为头孢菌素(98.1%)和环氧菌(94.2%)(94.2%)。ESBL和MBL生产者分别为26%和80%。所有分离株都对结肠菌素具有中间抗性。抗碳青霉烯曲霉(CRAB)中最普遍的基因是BLA OXA-23,其次是BLA AOXA-24,BLA GES,BLA GES,BLA IMP和BLA OXA-58基因。本报告强调了螃蟹和对结菌素的中间抗性的存在,以及该地区不同碳酸碳纤维酶类别的几个基因的共存。因此,应及时确定抗性菌株,并应设计特定的治疗方案以控制治疗环境中抗药性基因的传播。
抗生素耐药性大肠杆菌是导致社区获得性和院内感染的主要病原体之一,发病率和死亡率较高 ( Hu et al., 2022 )。它们被认为是泌尿道感染 (UTI)、菌血症和腹腔内感染 (IAI) 的主要原因之一 ( Balasubramanian et al., 2023 )。大肠杆菌具有获得抗生素耐药基因 (ARG) 的能力,例如 bla CTX-M-15 超广谱 b -内酰胺酶 (ESBL),并迅速在整个社区传播它们 ( Gonza ́ lez et al., 2020 )。与其他产碳青霉烯酶的肠杆菌(如肺炎克雷伯菌和阴沟肠杆菌复合体)相比,产碳青霉烯酶大肠杆菌 (CP-Eco) 在临床环境中分离的频率并不高,但尤其令人担忧。这是因为它们的患病率正在上升(Cañada-Garc ı ́ a 等人,2022 年),人们担心它们会以类似于 ESBLs 的方式在社区中传播碳青霉烯酶基因(Gonza ́ lez 等人,2020 年)。此外,这些分离株通常对其他几种抗生素具有耐药性,因此难以治疗相关感染(Boutzoukas 等人,2023 年)。所有主要的碳青霉烯酶家族均已在 CP-Eco 中检测到 (Grundmann 等人,2017 年),此外还有多种对临床结果产生负面影响的毒力决定因素 (C ̌ urova ́ 等人,2020 年)。所有这些促使世界卫生组织宣布 CP-Eco 是一个关键的优先问题 (Tacconelli 等人,2018 年)。在全球范围内,抗生素耐药性大肠杆菌在中高收入国家医院内感染的发生率最高,每年造成 300 万至 2500 万人感染 (Balasubramanian 等人,2023 年)。在欧洲,2015 年 CP-Eco 引起的感染人数中位数为 2,619 人,死亡人数中位数为 141 人 (Cassini 等人,2019 年)。在西班牙,CP-Eco 的发病率已从 2013 年的孤立病例( Oteo 等人,2015 年)发展到 2019 年在西班牙 10 个不同的省份中被发现( Cañada-Garc ı ́ a 等人,2022 年)。
多药的生物(MDROS)是微生物,主要是细菌,它们对一种或多种类类的抗菌剂和某些抗生素具有抗性。因此,不再使用抗生素来杀死这些微生物。mdros,包括但不限于甲基甲基蛋白的金黄色葡萄球菌(MRSA),抗性霉素的肠球菌(VRE),产生甲状腺素酶的肠杆菌科和产生革兰氏阴性菌属的甲状腺素酶,以及产生革兰氏阴性菌的细菌。它们还包括大肠杆菌和克雷伯菌肺炎,鲍曼尼杆菌杆菌,以及诸如stenotrophomonas mattophilia的生物(Siegel等,2006)。根据世界卫生组织(WHO)的说法,MDRO是日益严重的威胁,在全球范围内构成了重要的公共卫生风险(Chan,2017年)。多药耐药性细菌病原体是最终的威胁,这需要应对细菌感染的新政策必要。美国疾病控制与预防中心报告[CDCP](2013)(Chambers and Deleo,2009年),美国抗铜绿假单胞菌和金黄色葡萄球菌感染了200万个人。在治疗环境中,抗菌耐药性是指微生物防止药物对其作用的能力。如果对此一无所有,到2050年,这将是死亡率的主要原因。细菌具有一种自适应机制,可帮助它们在充满挑战的情况下发展和忍受。抗生素就是一种压力源。已经发现,在抗生素污染的环境中,许多细菌会膨胀。细菌中耐药性决定因素的存在是生物体生存抗生素应激能力的主要原因。细菌既获得抗生素应激的固有特性,又具有内在特性。由于细菌自然合成了抗生素和抗生素耐药性酶,因此合成和耐药机制将共同进化是有道理的。在土壤中,产生抗生素的微生物与其他生物共存,抗生素的耐药性由于进化压力的增加而发展(Iskandar等,2022)。产生细菌的抗生素中存在的耐药性决定因素,这些抗生素具有临床分离株中直系同源物的概念。抗菌抗性已成为主要的威胁。当细菌暴露于环境中的抗生素时,在细菌中会形成选择性压力,从而导致基因的进化抗生素耐药性。
抗菌剂的广泛使用导致抗药性细菌迅速增加。在这种背景下,以革兰氏阴性杆菌为代表的多药抗性细菌的检测率正在增加,这对临床实践中的抗感染治疗构成了巨大挑战。根据Chinet(www.chinets.com)的数据,抗菌监测网络,肺炎肺炎的抗性率从2005年的2.9%增加到2021年的24.4%。对于大肠杆菌,对美皮烯的抗性率达到1.4% - 2.1%。肠杆菌对β-内酰胺抗生素的抗性的主要机制是β-内酰胺酶的产生。根据Ambler分类系统:A类(例如,扩展的光谱β-乳糖酰胺酶,ESBLS;和K. pneumoniae Carbapenemases,KPCS,KPCS),B级(E.G. B(E.G.,New Delhi Metallo-Beta-lactacamase s clange n n s Clance),头孢菌素酶)和D类(例如奥沙素酶,奥沙西斯)。对碳苯甲酸肠杆菌(CRE)的一项大型研究调查显示,KPC是最普遍的β-内酰胺酶,NDMS是K.肺炎K.肺炎的第二普遍β-内酰胺酶(Wang等,2018)。近年来,在耐碳青霉烯烃的碳青霉烯氏菌中已经变得越来越普遍(Tangden和Giske,2015; Yin等,2017)。考虑到上述β-乳糖酶的多样性,研究人员已密切关注新型广谱β-内酰胺酶抑制剂的发展(Shlaes,2013; Bush,2015; Vanscoy等,2016; 2016; Bhagwat等,2019)。目前,已销售了非贝氏乳酰胺结构的新型β-内酰胺酶抑制剂,包括阿维比巴坦,里贝塔姆和瓦博尔巴氏菌。Relebactam和Vaborbactam都不能抑制D类β-内酰胺酶。fl058是一种新型的焦油二氯辛烷(DBO)β-内酰胺酶抑制剂,其结构和活性类似于Avibactam。它主要抑制A类,C类和某些D类β-内酰胺酶,但不抑制NDMS(Sharma等,2016)。一项体外敏感性研究(待发表)表明,与阿维巴丹不同,仅FL058在大肠杆菌上具有某些抑制活性。Meropenem与4μg/ml FL058结合使用NDM-生产大肠杆菌(MIC 90 = 0.5 mg/l)的最小抑制浓度(MIC)的显着较低,对NDM产生的NDM抑制作用的作用显着降低,而NDM产生的K. pneumoniae(MIC 50 = 0.25 mg/l,MIC 90 = 4 MIC 90 = 4 MIC 90 = 4 MIC 90 = 4 MIC 90 = 4 M MIC 90 = 4 M MIC 90。一项完整的I期临床试验显示,FL058具有良好的安全性,耐受性和药代动力学(PK)特征(Huang等,2023)。体外药代动力学/药效学(PK/PD)模型已成为筛查β-内酰胺抗生素/β-内酰胺酶抑制剂疗法的剂量方案的重要工具(MacGowan等,2016; Vanscoy et al。,2016; MacGowan et al。它们也可以用来评估暴露于β-内酰胺抗生素/β-乳酰胺酶抑制剂的相关性与菌落计数的变化之间的相关性。随后对暴露响应关系的分析又可以支持剂量选择。鉴于此,这项研究模拟了FL058与MeropeNem在体外模型中结合使用的临床给药方案,以发现两种药物的最佳成分比和最佳的PK/PD指数和两种药物组合治疗的靶标。鉴于此,这项研究模拟了FL058与MeropeNem在体外模型中结合使用的临床给药方案,以发现两种药物的最佳成分比和最佳的PK/PD指数和两种药物组合治疗的靶标。