抗生素耐药性ESKAPE(屎肠球菌、金黄色葡萄球菌、肺炎克雷伯菌、鲍曼不动杆菌、铜绿假单胞菌和肠杆菌属)病原菌是对人类健康的全球威胁。ESKAPE病原菌是院内感染中最常见的机会性致病菌,相当一部分临床分离株对常规抗菌治疗不敏感。因此,能够有效对抗ESKAPE病原菌的创新治疗策略将带来巨大的社会效益和经济效益,并减轻成千上万患者的痛苦。在这些策略中,CRISPR(成簇的规律间隔的短回文重复序列)系统由于其高特异性而受到了格外的关注。遗憾的是,目前还没有基于CRISPR系统的直接抗感染治疗方法。本文就CRISPR-Cas系统在ESKAPE病原体研究中的应用进行综述,旨在为理想的新型药物研究提供方向,为解决后抗生素时代多重耐药菌(MDR)引起的一系列问题提供参考,但多数研究距离临床应用还有一定的距离。
摘要在肠球菌,金黄色葡萄球菌,肺炎葡萄球菌,肺炎,baumannii,pseudomonas aeruginosa和肠oeruginosa和肠道(Eskape)Microororganisms中伴有重要的World Well Wellign Wellige Well Well Well Well Well Well Well Wellbe, 生物膜的发展,这是一个关键成分,增加了许多微生物的严重程度,会恶化治疗感染的麻烦。 常见的抗生素一次又一次地表现出由于其自然的阻塞成分而消除生物膜的不足。 纳米生物学提供了一种自信的方法来处理在这种特定情况下与生物膜有关的感染。 纳米元素使用纳米技术来制造可以成功打击生物膜耐药机制的创新抗菌物质。 纳米生物可以进入生物膜晶格,破坏细菌交流,并改善抗菌药物向细菌细胞的运输。 这导致了对生物膜改善的可行预期,并消除了先前现有的生物膜。 本章含有纳米素的最新改善,用于控制埃斯卡普感染带来的生物膜的发展,这些感染对抗微生物剂具有抗性。 它还讨论了不同的纳米益生元方法。 此外,审查可以理解纳米生物与常规抗生素或其他治疗剂的组合如何有助于抗菌效率并降低耐药性的风险。生物膜的发展,这是一个关键成分,增加了许多微生物的严重程度,会恶化治疗感染的麻烦。 常见的抗生素一次又一次地表现出由于其自然的阻塞成分而消除生物膜的不足。 纳米生物学提供了一种自信的方法来处理在这种特定情况下与生物膜有关的感染。 纳米元素使用纳米技术来制造可以成功打击生物膜耐药机制的创新抗菌物质。 纳米生物可以进入生物膜晶格,破坏细菌交流,并改善抗菌药物向细菌细胞的运输。 这导致了对生物膜改善的可行预期,并消除了先前现有的生物膜。 本章含有纳米素的最新改善,用于控制埃斯卡普感染带来的生物膜的发展,这些感染对抗微生物剂具有抗性。 它还讨论了不同的纳米益生元方法。 此外,审查可以理解纳米生物与常规抗生素或其他治疗剂的组合如何有助于抗菌效率并降低耐药性的风险。生物膜的发展,这是一个关键成分,增加了许多微生物的严重程度,会恶化治疗感染的麻烦。常见的抗生素一次又一次地表现出由于其自然的阻塞成分而消除生物膜的不足。纳米生物学提供了一种自信的方法来处理在这种特定情况下与生物膜有关的感染。纳米元素使用纳米技术来制造可以成功打击生物膜耐药机制的创新抗菌物质。纳米生物可以进入生物膜晶格,破坏细菌交流,并改善抗菌药物向细菌细胞的运输。这导致了对生物膜改善的可行预期,并消除了先前现有的生物膜。本章含有纳米素的最新改善,用于控制埃斯卡普感染带来的生物膜的发展,这些感染对抗微生物剂具有抗性。它还讨论了不同的纳米益生元方法。此外,审查可以理解纳米生物与常规抗生素或其他治疗剂的组合如何有助于抗菌效率并降低耐药性的风险。此外,本章还讨论了纳米生物学来治疗与生物膜相关的疾病的进步和使用中可能存在的困难和未来途径。
抗生素耐药性已成为一个公共卫生问题,高发病率和死亡率很高,主要影响新兴经济体的国家(Zhen等,2019)。世界卫生组织(WHO)认为,在2050年,与抗菌抗药性相关的感染(AMR)将导致每年1000万人死亡(Giono-Cerezo等人,2020年)。疾病控制与预防中心(CDC)估计,在美利坚合众国(美国),与抗生素耐药性微生物有关的感染每年至少造成23,000人死亡(Yu-Xuan等人,2020年)。由于AMR细菌引起的感染,健康个人需要使用高毒性抗生素,例如Colistin或上一代抗菌剂的有限列表(Benkő等,2020年)。在2017年2月,该人出版了一份抗生素耐药的微生物清单,为新的抗菌治疗的发展被认为是紧急的。此列表包括来自Eskape组的微生物:粪肠球菌,金黄色葡萄球菌,克雷伯氏菌肺炎,baumannii acinetobacter baumannii,pseudomonas aeruginosa和aeruginosa和intobacter sppter spp(de oliveirira spp(de oliveira et e et an de oliveira et et and.2020)。由于它们的内在和广泛的抗生素耐药性,并且能够获取多种基因赋予它们多药耐药性(Ayobami et al。,2022)。此外,它们也被认为是大多数医疗相关感染(HAI)的原因,特别是对于严重患病和免疫功能低下的患者(Yu-Xuan等,2020; Ayobami et al。,2022)。几项研究表明,患有AMR感染的患者更难以接受适当的治疗方法,使他们能够解决感染,从而使他们能够传播抗菌抗性,但这种情况也必须使这些患者更有可能在ICU中接受,并接受更多的抗生素治疗(Zhen等人,2019年; 2019年; santos-Zont Al。在当地,没有研究或报告评估Eskape组抗菌剂的抗性。在2014年至2015年期间,在Me ́ Xico市的六个卫生机构中对细菌抗性进行了监测研究,其中评估了抗生素耐药性。结果强调了氨苄青霉素/磺胺硫酸氨基氨木的耐药性高分,以及对肺炎链球菌分离株的抗tigecycline的抗性。这项研究还显示出对头孢菌素,酸磷脂,cipro氟沙霉素,阿米卡辛,庆大霉素和毒素分离株中对头孢菌素的敏感性低(Bolado-Martı́nez Nez等,2018)。由于这些先前的结果,重要的是实施包括主动流行病学监测的措施,以获取有关索诺拉卫生机构中埃斯卡普集团微生物的患病率和抵抗力的更多信息。这将允许及时检测Eskape组的微生物,以鉴定其抗生素耐药性纤维,并在每个患者需要的抗生素上使用抗生素抗性。这项研究的目的是分析Eskape群微生物的抗生素耐药性,这些抗生素耐药性是从Hermosillo的11个卫生机构和Ciudad Obrego的11个卫生机构中回收的,在2019 - 2020年期间,我是Me ́ Xico。
1 微生物科——科鲁尼亚大学医院(CHUAC),15006 拉科鲁尼亚,西班牙; manugo04@gmail.com (MGdA); monica.gonzalez.bardanca@sergas.es (MG-B.); Melisa.Fernandez-Quejo.Mateos@sergas.es (MF-Q.); german.bou.arevalo@sergas.es (GB) 2 拉科鲁尼亚生物医学研究所 (INIBIC),拉科鲁尼亚大学 (UDC),15006 A Coruña,西班牙; luciablasco@gmail.com(LB); olgapacios776@gmail.com(OP); bleriot.ines@gmail.com (IB); laugemis@gmail.com (LF-G.); maria.lopez.diaz@sergas.es (ML) 3 代表西班牙传染病和临床微生物学会(SEIMC)的抗菌药物作用机制和耐药性研究组(GEMARA),28003 马德里,西班牙 4 西班牙传染病研究网络(REIPI),41071 塞维利亚,西班牙 * 通信地址:ma.del.mar.tomas.carmona@sergas.es;电话:+34-9811-763-99 † 同等贡献。