Maglev衍生的系统利用了高级技术,例如线性电动机和电磁悬架,可实现较高的速度,降低能源消耗和降低的维护成本。可交付方式通过升级现有的铁路走廊,维护当前网络的效率,并增强与未来基础架构(如Hyperloops)的互操作性,从而确定了显着提高性能的潜力。此外,该报告强调了比较研究对与现有系统的兼容性的重要性,尤其是欧洲火车控制系统(ECT)2级,以及开发火车检测系统(TDS)和欧洲兼容性解决方案的需求实际上,实际上,该分析的关键方面是对工作包2、3和4与该系统的PILLSWORK PILLSWORK中的研究包的交叉检查。通过整合以前的工作包的结果,这种可交付的方法强调了对现有基础架构中MDS技术的标准化工作的需求。
航空运输工程科学学士 代码 课程名称 ETCS 一年级 B-103-04 高等数学 6 B-455-03 物理 6 C-142-04 劳动安全、民防和环境保护 3 P-003-05 技术制图 6 B-254-05 外语 I 3 B-457-03 专业介绍 3 B-460-03 航空业务基础知识 3 C-603-05 留学生拉脱维亚语 3 二年级 B-009-02 材料工程 6 B-214-05 技术力学 6 B-295-05 航空英语 3 B-136-04 电子学基础 3 B-438-03 航空发动机设计和控制系统 9 P-013-02 空气动力学和飞行动力学 6 三年级 B-445-03 人为因素 3 B-442-03 飞行管理 3 B-469-03 全球导航系统 3 P-020-02 飞机液气系统 6 P-233-02 飞机技术维护提供 6 第四年 B-433-03 飞机维护规划 6 B-447-03 工程建模与仿真 6 B-449-03 合规性监测系统 6 B-463-03 可靠性工程 6
ATC 自动列车控制 AGC 欧洲主要国际铁路线协议 AGTC 欧洲重要国际联合运输线和相关设施协议 EU 欧盟 FTE 论坛 欧洲列车 IM 基础设施经理 MCTI 塞尔维亚共和国建设、交通和基础设施部 MF 塞尔维亚共和国财政部 NS 网络声明 DG 危险货物 OSS 一站式服务 RID(2017)国际铁路危险货物运输条例 RNE RailNetEurope(欧洲基础设施管理者协会) UIC 国际铁路联盟 DR 塞尔维亚共和国铁路局 – 监管机构 IŽS“塞尔维亚铁路基础设施” JSC EMU 电力动车组 DMU 柴油动车组 TOR 轨道顶部 RS LTDG GSM-R ERTMS ETCS
Elbit Systems 的增强型战术计算机 (ETC) 系列为多种作战场景提供了创新的指挥和控制 (C 2 ) 功能和战术数据传播。这些计算机专为步兵、特种部队和指挥人员使用而设计,部署在各种平台上,包括坦克、火炮和装甲运兵车 (APC),以及轮式和履带式战车。ETC 采用最先进的计算机架构和最新的 Intel ® 移动计算平台构建,其灵活的配置可以轻松修改以满足客户的需求。ETC 具有极其坚固的设计,即使在最恶劣的操作和环境条件下也能取得成功,经过充分的战斗验证,目前已被世界各地的许多武装部队使用,包括以色列国防军、北约部队等。
Elbit Systems 的增强型战术计算机 (ETC) 系列为多种作战场景提供了创新的指挥和控制 (C2) 功能和战术数据传播。这些计算机专为步兵、特种部队和指挥人员使用而设计,部署在各种平台上,包括坦克、火炮和装甲运兵车 (APC),以及轮式和履带式战车。ETC 采用最先进的计算机架构和最新的英特尔移动计算平台构建,其灵活的配置可以轻松修改以满足客户需求。ETC 具有极其坚固的设计,可在恶劣的操作和环境条件下取得成功,经过充分的战斗验证,目前已被世界各地的众多武装部队使用,包括以色列国防军、5Eyes 国防军、北约等。
迄今为止,GNSS 在欧洲铁路中的作用仅限于非安全相关应用,包括资产管理和乘客信息服务。然而,最新的技术发展表明,增强型 GNSS 在其他传感器的配合下,可以满足严格的欧洲电工标准化委员会 (CENELEC) 安全和完整性等级要求。例如,列车定位目前基于应答器,应答器是沿铁路轨道以特定间隔安装的物理元件。在可能的情况下,铁路界旨在用基于欧洲 GNSS 的定位解决方案取代物理应答器。这将能够降低基础设施相关成本,同时保持 ETCS 的运行安全。由于这一进步,对安全关键(信号和自动列车控制)和非安全关键(资产管理、乘客信息系统、铁路货运可视性)目的的经济高效和创新的 GNSS 应用的需求将会增加。
费率 NEC 活动名称 费率 NEC 活动名称 ABECS D11A (CR) CVN 73 GEO WASH ABCM CVN 73 GEO WASH ABFCS LHD 5 BATAAN ABCM CVN 73 GEO WASH ABHCS CVN 73 GEO WASH AOCM CVN 68 NIMITZ ABHCS 825A (OJT) CVN 73 GEO WASH AVCM 724B (OJT, CL) CVN 68 NIMITZ ABHCS LHD 5 BATAAN AVCM CVN 73 GEO WASH ACCS F07A (CR) F10A (OJT) CVN 73 GEO WASH AZCM CVN 68 NIMITZ ADCS 770B (CR) VFA 146 CSCM S14A CVN 73 GEO WASH AMCS 770B (CR) HSC 6 DCCM U46A (CR) CVN 73 GEO WASH AOCS LHD 5 巴丹 ENCM U16A (CR) U13A (CR) LPD 19 MESA VERD ASCS F21A CVN 73 GEO WASH ETCM 725A CVN 68 尼米兹 ATCS CVN 73 GEO WASH ETCM CVN 73 GEO WASH ATCS 770B CVN 68 尼米兹 ETCM LHD 5 巴丹 ATCS 770B (CR) VAW 116 FCCM CVN 68 尼米兹 ATCS CVN 73 GEO WASH FCCM 725A LHD 5 巴丹 ATCS HSM 73 GSCM 811A (CL) CVN 68尼米兹 CSCS CVN 73 GEO WASH HTCM 811A (CL) LHD 5 巴丹 CSCS S14A CVN 73 GEO WASH ITCM LHD 5 巴丹 CSCS DDG 73 迪卡特 ITCM H01A CCSG 11 CSCS DDG 93 CH HOON LSCM CVN 68 尼米兹 CSCS LSD 50 卡特 H LSCM CVN 73 GEO WASH DCCS U46A LPD 19 梅萨 VERD MMCM CVN 68 尼米兹 DCCS U46A U16A (CR) LSD 50 卡特 H MMCM U16A COMPHIBRON 8 EMCS CVN 73 GEO WASH MMCM U16A (CR) LHD 5 巴丹 EMCS U35A LPD 19 梅萨 VERD MMCM CVN 73 GEO WASH EMCS CVN 73 GEO WASH NCCM CVN 73 GEO WASH EMCS LSD 50 CARTER H ENCS 747B U13A(CR) LPD 19 MESA VERD ETCS CVN 73 GEO WASH ETCS 725A CVN 73 GEO WASH ETCS LPD 19 MESA VERD FCCS CVN 73 GEO WASH FCCS V41A CCSG 11 FCCS V41A 725A COMDESRON 9 GMCS CVN 68 NIMITZ GMCS CVN 73 GEO WASH GSCS DDG 108 W MEYER GSCS DDG 60 P HAMILTN ITCS 741A(CR) LPD 19 MESA VERD ITCS 811A(CL) LPD 19梅萨 VERD LSCS CVN 73 GEO WASH LSCS 830A CVN 73 GEO WASH LSCS S09A (CR) CVN 68 NIMITZ LSCS CVN 73 GEO WASH OSCS DDG 60 P HAMILTN OSCS W20A COMDESRON 9 OSCS DDG 73 DECATUR OSCS LHD 5 巴丹 PSCS 791F (OJT) LHD 5 巴丹 QMCS W12A CVN 73 GEO WASH
bn 十亿 CEF 连接欧洲设施 CEMT 等级 根据 CEMT(欧洲交通部长会议)第 92/2 号决议对内河航道进行分类 CNC 核心网络走廊 DG MOVE 欧盟委员会 – 交通运输总司 EC 欧盟委员会 EIA 环境影响评估 ERTMS 欧洲铁路交通管理系统 ESIF 欧洲结构和投资基金 ETCS 欧洲列车控制系统 EU 欧盟 GDP 国内生产总值 GHG 温室气体 INEA 创新和网络执行机构(欧盟) ITS 智能交通系统 IWW 内河航道 km 公里 KPI 关键绩效指标 LNG 液化天然气 LPG 液化石油气 m 米 mn 百万 MoS 海上高速公路 MTMS 多式联运市场研究 MS 欧盟成员国 NSB 北海 - 波罗的海 na 不适用/不适用 RFC 铁路货运走廊 RRT 铁路和公路终点站 TEN-T 泛欧交通网
ABECS 21 EOCS 16 ABFCS 13 EODCS 71 ABHCS 28 ETCS 37 ACCS 16 FCACS 46 ADCS 75 FCCS 49 AECS 60 GMCS 33 AGCS 5 GSCS 103 AMCS 104 HMCS 138 AOCS 52 HTCS 25 ASCS 34 ICCS 16 ATCS 111 ISCS 39 AWFCS 6 ITCS 95 AWOCS 12 LNCS 7 AWRCS 16 LSCS 86 AWSCS 23 MACS 102 AWVCS 7 MCCS 9 AZCS 11 MMCS 46 BMCS 59 MNCS 28 CECS 5 MRCS 3 CMCS 25 NCCS1 28 cscs 55 NCCS2 30 CTICS1 7 NDCS1 9 CTICS2 11 NDCS2 12 CTICS3 2 oscs 64 CTICS4 5 PRCS 8 CTMCS 11 PSCS 29 CWTCS 33 QMCS 19 CTRCS 26 RPCS 3 CTTCS 30 RSCS 15 cues 24 STGCS 56 DCCS 43 UTCS 5 EMCS 26 YNCS 65 ENCS 55 总计 2303
摘要:在变暖气候中,与热带气旋(TCS)和热带气旋(ETC)相关的沿海化合物激增和降雨驱动的洪水危害的努力有所增加。尽管取得了长足的进步,但是,获得了可行的细节,例如在空间和时间上变化的分布以及城市中洪水危害改变危险的近端原因仍然是一个持续的挑战。在这里,首次使用由降雨和风暴潮驱动的基于物理的流体动力洪水模型来估计复合洪水事件的幅度和频率。我们将其应用于纽约市的特定案例。我们发现,随着气候温暖,海平面上升(SLR)将比暴风雨气候的变化更加明显地增加TC和ETC复合洪水危害。我们还预测,到本世纪末,破坏性沙质的复合洪水的可能性将增加5倍。我们的结果对沿海社区的气候变化适应具有很大的影响。