与糖尿病有关的血糖紧急情况 - 对玛丽安娜do Rocio Padilha文学摘要的综合评论摘要:这项研究的实现是由其高学术,社会和专业相关性证明的。糖尿病是人群中最普遍的慢性疾病之一,导致体内功能障碍并导致严重和紧急并发症的发展。目的:确定科学文献中最常见的血糖紧急情况。方法论:这是一项综合文献综述,可从不同的研究中收集有关该主题的信息。在第一阶段,描述符用于健康科学(DECS),以寻求与特定主题相关的文章,并将其与“和”操作员相结合。第二阶段涉及过滤器的应用,例如语言(葡萄牙语)和出版期(2019年至2023年),以及删除重复文章。第三阶段包括阅读证券和摘要,以选择符合与糖尿病患者,糖尿病并发症和血糖紧急情况有关的纳入标准的文章。在最后阶段,以完整和应用的排除标准读取所选文章。对文章的搜索是在Lilacs,Scielo和Google Scholar等数据库中进行的。结果:确定了与主题相对应的96篇文章。通过完整阅读并通过定义标准的适用性,排除了93篇文章。因此,选择了三篇文章来构成本研究的样本。这篇综述的结果允许与糖尿病相关的主要血糖紧急情况:糖尿病(CAD)和高血糖状态高渗(EHH),以及这些疾病的保护,风险和触发因素。结论:主要糖尿病相关的血糖紧急情况是糖尿病性cetocidosis和高渗透高血糖状态,这些状态是严重的病情,它们具有非特异性症状,需要快速诊断。立即治疗对于减少严重的风险和并发症以及降低与这些疾病相关的发病率和死亡率至关重要,由于缺乏有关该主题的出版物的缺乏,这是受到限制的,这表明需要新的研究来评估有关糖尿病性酮症症的知识,尤其是高血糖高血糖状态。关键字:紧急护理;糖尿病;糖尿病并发症;高血糖;低血糖。1引言糖尿病是全球增长的慢性疾病,由于其复杂的并发症,代表了严重的公共卫生问题。由于缺乏独特的体征和症状以及对疾病的知识有限,其诊断通常很晚,这表现出谨慎和异质的方式。(Lima等,2021)
使模型对某些特定特征敏感,但对边缘不敏感。2。通过转移学习即兴创作:通过使用Resnet50的预训练的权重,对阿尔茨海默氏症的特定数据进行了微调,以增强模型适应性并提高较小或不平衡数据集的性能。
在这项研究中,我们将Java作为编程语言,以及综合开发环境(IDE)作为文本编辑器,以及我们实施的Deeplearning4J库。这项研究是在具有以下规格的高端PC上进行的:具有双核CPU,16GB RAM和2TB的SSD存储的VP,由带有8个核心和512MB RAM的GPU补充。如表3所示,实验结果表明,健康移动应用中训练的神经网络引擎有效地检测到九种疾病中的六种,尽管它在鉴定心脏病方面的表现是次优的。尽管有这些限制设置,但仍需要进一步的改进来增强应用程序的有效性。我们为每种疾病选择了适当的神经网络模型,并在Android Studio中实施了它们。我们的目标是提供一个解决这些环境中挑战的应用程序,使患者有能力在管理健康方面发挥更为积极的作用。该应用程序可确保个人可以访问有关其健康状况的信息,无论地理障碍如何,并且简化了获得疾病诊断的过程,从而节省了时间和降低成本。这项初步研究强调了早期疾病检测和在资源贫乏的环境中积极健康管理的重要性。对于将来的工作,我们计划探索其他技术,例如支持向量机(SVM)和转移学习,以进一步验证神经网络的性能。在本研究中未进行现场测试时,我们认识到需要评估和验证应用程序对实际临床诊断的准确性,这将是即将进行的研究的重点。
黑客技术的快速发展以及高级学习技术(例如人工智能(AI),机器学习(ML)和深度学习(DL)等高级学习技术的日益增长的一体化已经创造了一个复杂的数字生态系统。随着技术的进步,黑客使用的方法(无论是恶意和道德)越来越复杂。同时,AI和ML在网络安全中的不断增长正在重塑如何开发和部署防御机制。本文探讨了黑客学习与高级学习之间的交集,分析了这些领域相互影响的方式。通过详细探索AI和ML如何改变黑客方法,道德黑客攻击和网络安全教育,本文深入研究了在黑客景观和网络安全专业人员的发展中所存在的复杂性,道德问题以及挑战。此外,本文研究了该交叉路口的潜在未来,尤其是量子计算的影响以及网络安全教育中跨学科方法的必要性。
这项研究着重于使用传统设置,下坡单纯形和遗传算法方法优化CNC铣削参数。该研究评估了加工参数(例如降低速度和进料速度)对关键性能指标的影响,包括表面粗糙度,工具磨损,加工时间和整体成本效益。通过使用3D表面和轮廓图,该研究表明,最佳切割速度的范围为40-80 m/min,进料速度从0.1-0.25 mm/牙齿介于0.1-0.25 mm/牙齿中,导致峰值工具寿命约为9-10分钟。遗传算法的表现优于传统设置和下坡单纯词,其单位成本最低为8.50美元,而下坡单纯子的成本为9.00美元,传统设置为11.00美元。收敛分析表明,遗传算法虽然需要更多的迭代,但总体成本较低(约8.50美元),并提供了更好的优化结果。成本分解分析显示,加工和改变工具的成本大幅降低,遗传算法将工具换成本降低至1.50美元,加工成本降至3.50美元,从而带来了最具成本效益的解决方案。这些发现证明了高级优化技术在增强CNC铣削过程,提高加工效率和最小化运营成本方面的有效性。
‡皇家比利时自然科学研究所(RBINS),运营局自然环境(OD自然),水上和地层生态学(ATECO),海洋生态与管理(Mareco),Rue Vautier 29,1000,1000,Brussels,Brussels,Bilgium§§tethys Research Institute,Tethys Research Institute,Viale G. B. B. B. B. B. B. B. Gadio 2,20122年2月2日,2012年2月2日| Greenov Ites,10 Docteur Joseph Audic,56000,法国Vannes。 13009 Marine,70 Rue Jean Doucet,16470,法国圣米歇尔»Interniversity Microectronics Center(IMEC),75 Kapeldref,3001,比利时Sirehna,5 Rue de l'albrane,44340,Buguena,Buguenais,france,弗朗西斯,弗朗西斯,弗朗西斯,弗朗西斯,弗朗西斯92 Group,5 Rue de l'Halbrane,44340,法国Bouguenais
1)定期在SISPG上登录FCAV或其他UNESP学生,并驳回了文件上传。2)特殊学生应将文件上传到入学的最后一天;记住,在在线注册结束时,他们必须遵循通过电子邮件发送的说明激活对SISPG的访问并查看上传屏幕(不发送文档将导致拒绝注册);注册:https://www.fcav.unesp.br/#!/sino/pos-graduacao-new/aluno/topicos-esperial/
本文提出了一种使用YOLO算法估算车速的新方法。通过分析车辆沿连续线的运动,系统可以计算车辆的移动速度以及覆盖已知距离所需的时间。与基于物理数据的传统方法不同,此方法仅使用视频数据,使其无创和可用作为现有监视摄像机。Yolo附加使用或复杂安装。与传统方法相比,这种方法侧重于诸如准确性,适用性和及时性等因素。通过成功的实验,我们证明了基于YOLO的系统可以高精度估算车辆速度,并为自动驾驶汽车控制和交通管理提供了良好的解决方案。该计划还提供了一个机会,可以通过为全球交通监控提供成本效益和大规模的解决方案来改变交通监控。
自然语言处理是AI的不断增长的子场,具有不同应用的多种多样。常见且看似直接的应用是文档相似性,通常会实现各种NLP算法。但是,加上其不同技术的多功能性,也有缺点。不同的算法倾向于集中在一个或多个相似性的因素上,这意味着它们可以在一种类型的相似性评估中表现出色,但会与另一种相似性评估。本文研究了三种NLP技术,重点是它们自动化相似性评估的能力。他们的重点是课程内容在课程资格或课程学分之间使用之间的相似性。在此时间点,此比较是手动进行的。确定哪些因素在学分课程中很重要,已经实施了三种算法并在各种课程比较测试中运行。所选的算法和因子是TF-IDF,用于加权项重叠,n-gram,用于上下文匹配,并使用关键字提取进行主题检测。在评估其整体效果时,使用关键字提取的NER似乎是最佳选择。直到显而易见的是,它更加一致,自信地给出错误的答案。它在具有一些相似之处的课程上给出了很高的相似性分数,例如来自同一所大学,但不够相似,无法彼此学分。使用n-grams来确定相似性是在相似和不同课程上最可靠的,并且被证明是可靠的选择。tf-idf的当前词汇表现不佳。总结基于上下文的N-gram的相似性在研究课程自动信用时被证明是一个可靠且有用的因素,但在实际使用之前需要进一步的工作。