摘要:在人类呼吸中持续监测氢硫(H 2 s),以便早期诊断口腔症,这对于预防牙齿疾病具有很大的意义。然而,据我们所知,对高度选择性和敏感的H 2 S气体传感器材料的制造仍然是一个挑战,直接对真实呼吸样品进行了直接分析,据我们所知。为了解决这个问题,在此,我们通过简单添加氯化钠(NACL)和PT纳米颗粒(NPS)(NPS),将WO 3纳米纤维与碱金属(NA)和贵金属(PT)催化剂进行齐全的连接化,然后进行电子传播过程。WO 3晶粒中的Na-充值和PT NPS装饰诱导Na 2 W 4 O 13相的部分演化,从而导致PT / Na 2 W 4 O 13 / WO 3多接口杂点的堆积有选择地与含硫的物种相互作用。结果,我们实现了最高的传感性能,即(r air / r气体)= 780 @ 1 ppm和选择性(r H2S / r etoH)= 277 = 277,对于1 ppm乙醇,在基于化学的H 2 S传感器中,由于基于化学的H 2 S传感器,由于Synergistion Anderonic和电子NARONOC的NARONONIC ANDERONIC ANDAN NA NA NARINE SERTISITION / NA证明,根据我们的测试设备(80情况)和气相色谱法获得的直接呼吸信号测量的H 2 S浓度之间的相关性(准确性= 86.3%)实际上对直接有效,并且基于H 2 S浓度之间的相关性(准确性= 86.3%)是有效的。这项研究为直接,可靠性和快速检测在实际人类呼吸中直接检测而无需任何收集或过滤设备的可能性。关键字:钠,金属氧化物纳米纤维,气体传感器,氢气,直接呼吸分析H
从果蝇中的基因组DNA制备该方案可以从40-100 mg的成年蝇(蝇重约1 mg)中分离出高度纯的基因组DNA。首先,在核保持完整的条件下,蝇是在缓冲液中磨碎的,然后使用SDS将DNA从断裂的组织中释放出来。接下来,进行常规的苯酚提取(去除蛋白质)和氯仿提取(去除苯酚),并用乙醇沉淀核酸。离心后(去除脂质和小细胞分子),将核酸沉淀溶解并用rnasea(降解RNA)和蛋白酶K(降解rNASEA和其他蛋白质)串行消化。其他苯酚/氯仿沉淀和乙醇沉淀产生高度纯化的基因组DNA。我们的目标是完整的基因组DNA - 避免通过过度的移液和涡旋剪切DNA。1。将50个成年果蝇放入装有微型植物的1.5 mL微管中,并在500 µl的缓冲液中彻底磨碎A。用500 µl的缓冲液B冲洗杵,将冲洗液加入匀浆中;通过反转微管轻轻混合。在37°C下孵育1小时2。切断P1000微量移动尖端的尖端,然后使用它将匀浆(500 µL)的一半转移到第二个微管中。苯酚通过在每个管,帽和混合物中添加相等的体积(500 µL)Te饱和苯酚来提取样品。离心5分钟。3。使用截止P200尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。避免绘制接口材料。离心5分钟。4。5。通过在每个管,帽和混合物中添加等体积(500 µl)苯酚的苯酚来重新提取样品。使用截止P200尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。避免绘制接口材料。氯仿通过在每个管,帽和混合物中添加等体积(500 µl)的氯仿提取样品。离心1分钟。使用截止尖端将透明顶层(水相)绘制为两个新的微管(每个微管)。将NaCl添加到0.1m的最终浓度。乙醇通过在每个微管中添加2卷(〜850 µl)的EtOH来沉淀您的样品;轻轻混合。观察核酸的沉淀。将微管放在-20°C过夜以鼓励沉淀。6。离心10分钟。丢弃上清液;短暂地干燥SpeedVac中的颗粒(将显示使用)。7。如下,将样品组合到单个微管中。然后,使用截止P200尖端将500 µl TE缓冲液加到一个管中