参考文献1。Skafte-Holm A,Pedersen TR,FrølundM,Stegger M,Qvortrup K,Michaels DL等。支原体phocimorsus sp。11月,与密封件接触后,从封闭手指或化粪池关节炎的斯堪的纳维亚患者中分离出来。Int J Syst Evol微生物。2023; 73:1-10。https://doi.org/10.1099/ ijsem.0.006163 2。McCabe SJ,Murray JF,Ruhnke HL,Rachlis A.从猫那里获得的手的分枝杆菌感染。J手部外科手术。1987; 12:1085–8。 https://doi.org/10.1016/ S0363-5023(87)80119-3 3。 Khan F,Engers D,Lieberman JA,Moudgal V.从猫咬伤的先前未描述的分枝杆菌物种传播感染。 感染Dis Clin实践。 2024; 32:1-4。 https://doi.org/10.1097/ipc.0000000000001314 4。 Chomel BB,Boulouis HJ,Breitschwerdt EB。 猫刮擦疾病和其他人畜共患病。 J Am Vet Med Assoc。 2004; 224:1270–9。 https://doi.org/10.2460/ javma.2004.224.1270 5。 投手DG,尼古拉斯RA。 支原体主机特异性:事实还是虚构? 兽医J. 2005; 170:300–6。 https://doi.org/10.1016/ j.tvjl.2004.08.0111987; 12:1085–8。https://doi.org/10.1016/ S0363-5023(87)80119-3 3。 Khan F,Engers D,Lieberman JA,Moudgal V.从猫咬伤的先前未描述的分枝杆菌物种传播感染。 感染Dis Clin实践。 2024; 32:1-4。 https://doi.org/10.1097/ipc.0000000000001314 4。 Chomel BB,Boulouis HJ,Breitschwerdt EB。 猫刮擦疾病和其他人畜共患病。 J Am Vet Med Assoc。 2004; 224:1270–9。 https://doi.org/10.2460/ javma.2004.224.1270 5。 投手DG,尼古拉斯RA。 支原体主机特异性:事实还是虚构? 兽医J. 2005; 170:300–6。 https://doi.org/10.1016/ j.tvjl.2004.08.011https://doi.org/10.1016/ S0363-5023(87)80119-3 3。Khan F,Engers D,Lieberman JA,Moudgal V.从猫咬伤的先前未描述的分枝杆菌物种传播感染。 感染Dis Clin实践。 2024; 32:1-4。 https://doi.org/10.1097/ipc.0000000000001314 4。 Chomel BB,Boulouis HJ,Breitschwerdt EB。 猫刮擦疾病和其他人畜共患病。 J Am Vet Med Assoc。 2004; 224:1270–9。 https://doi.org/10.2460/ javma.2004.224.1270 5。 投手DG,尼古拉斯RA。 支原体主机特异性:事实还是虚构? 兽医J. 2005; 170:300–6。 https://doi.org/10.1016/ j.tvjl.2004.08.011Khan F,Engers D,Lieberman JA,Moudgal V.从猫咬伤的先前未描述的分枝杆菌物种传播感染。感染Dis Clin实践。2024; 32:1-4。https://doi.org/10.1097/ipc.0000000000001314 4。Chomel BB,Boulouis HJ,Breitschwerdt EB。猫刮擦疾病和其他人畜共患病。J Am Vet Med Assoc。2004; 224:1270–9。 https://doi.org/10.2460/ javma.2004.224.1270 5。 投手DG,尼古拉斯RA。 支原体主机特异性:事实还是虚构? 兽医J. 2005; 170:300–6。 https://doi.org/10.1016/ j.tvjl.2004.08.0112004; 224:1270–9。https://doi.org/10.2460/ javma.2004.224.1270 5。投手DG,尼古拉斯RA。支原体主机特异性:事实还是虚构?兽医J.2005; 170:300–6。 https://doi.org/10.1016/ j.tvjl.2004.08.0112005; 170:300–6。https://doi.org/10.1016/ j.tvjl.2004.08.011
参考文献1。Skafte-Holm A,Pedersen TR,FrølundM,Stegger M,Qvortrup K,Michaels DL等。支原体phocimorsus sp。11月,与密封件接触后,从封闭手指或化粪池关节炎的斯堪的纳维亚患者中分离出来。Int J Syst Evol微生物。2023; 73:1-10。https://doi.org/10.1099/ ijsem.0.006163 2。McCabe SJ,Murray JF,Ruhnke HL,Rachlis A.从猫那里获得的手的分枝杆菌感染。J手部外科手术。1987; 12:1085–8。 https://doi.org/10.1016/ S0363-5023(87)80119-3 3。 Khan F,Engers D,Lieberman JA,Moudgal V.从猫咬伤的先前未描述的分枝杆菌物种传播感染。 感染Dis Clin实践。 2024; 32:1-4。 https://doi.org/10.1097/ipc.0000000000001314 4。 Chomel BB,Boulouis HJ,Breitschwerdt EB。 猫刮擦疾病和其他人畜共患病。 J Am Vet Med Assoc。 2004; 224:1270–9。 https://doi.org/10.2460/ javma.2004.224.1270 5。 投手DG,尼古拉斯RA。 支原体主机特异性:事实还是虚构? 兽医J. 2005; 170:300–6。 https://doi.org/10.1016/ j.tvjl.2004.08.0111987; 12:1085–8。https://doi.org/10.1016/ S0363-5023(87)80119-3 3。 Khan F,Engers D,Lieberman JA,Moudgal V.从猫咬伤的先前未描述的分枝杆菌物种传播感染。 感染Dis Clin实践。 2024; 32:1-4。 https://doi.org/10.1097/ipc.0000000000001314 4。 Chomel BB,Boulouis HJ,Breitschwerdt EB。 猫刮擦疾病和其他人畜共患病。 J Am Vet Med Assoc。 2004; 224:1270–9。 https://doi.org/10.2460/ javma.2004.224.1270 5。 投手DG,尼古拉斯RA。 支原体主机特异性:事实还是虚构? 兽医J. 2005; 170:300–6。 https://doi.org/10.1016/ j.tvjl.2004.08.011https://doi.org/10.1016/ S0363-5023(87)80119-3 3。Khan F,Engers D,Lieberman JA,Moudgal V.从猫咬伤的先前未描述的分枝杆菌物种传播感染。 感染Dis Clin实践。 2024; 32:1-4。 https://doi.org/10.1097/ipc.0000000000001314 4。 Chomel BB,Boulouis HJ,Breitschwerdt EB。 猫刮擦疾病和其他人畜共患病。 J Am Vet Med Assoc。 2004; 224:1270–9。 https://doi.org/10.2460/ javma.2004.224.1270 5。 投手DG,尼古拉斯RA。 支原体主机特异性:事实还是虚构? 兽医J. 2005; 170:300–6。 https://doi.org/10.1016/ j.tvjl.2004.08.011Khan F,Engers D,Lieberman JA,Moudgal V.从猫咬伤的先前未描述的分枝杆菌物种传播感染。感染Dis Clin实践。2024; 32:1-4。https://doi.org/10.1097/ipc.0000000000001314 4。Chomel BB,Boulouis HJ,Breitschwerdt EB。猫刮擦疾病和其他人畜共患病。J Am Vet Med Assoc。2004; 224:1270–9。 https://doi.org/10.2460/ javma.2004.224.1270 5。 投手DG,尼古拉斯RA。 支原体主机特异性:事实还是虚构? 兽医J. 2005; 170:300–6。 https://doi.org/10.1016/ j.tvjl.2004.08.0112004; 224:1270–9。https://doi.org/10.2460/ javma.2004.224.1270 5。投手DG,尼古拉斯RA。支原体主机特异性:事实还是虚构?兽医J.2005; 170:300–6。 https://doi.org/10.1016/ j.tvjl.2004.08.0112005; 170:300–6。https://doi.org/10.1016/ j.tvjl.2004.08.011
1. Silva C、Michereff S。2014 年。炭疽菌属的生物学和热带果树炭疽病的流行病学。Rev Caatinga 26:130–138。https://www.proquest.com/docview/1787752398?sourcetype=Scholarly%20Journals。2. Weir BS、Johnston PR、Damm U。2012 年。炭疽菌 gloeosporioides 物种复合体。Stud Mycol 73:115–180。https://doi.org/10.3114/sim0011 3. Liu F、Wang M、Damm U、Crous PW、Cai L。2016 年。植物病原真菌的物种边界:炭疽菌案例研究。BMC Evol Biol 16:81。 https://doi.org/10.1186/s12862-016-0649-5 4. Rogério F、Ciampi-Guillardi M、Barbieri MCG、Bragança CAD、Seixas CDS、Almeida AMR、Massola NS Jr. 2017。与巴西大豆炭疽病相关的元宝炭疽病的系统发育和变异。应用微生物学杂志 122:402–415。 https://doi.org/10.1111/jam.13346 5.Hartman GL、Sinclair JB、Rupe JC。 1999.大豆病害简述。第四版。 APS 出版社,美国明尼苏达州圣保罗。 6. Afolabi CG、Ogunsanya OM、Lawal OI。 2019. 评估一些非洲豆薯(Sphenostylis stenocarpa [Hochst. Ex A. Rich])种质对花芽和豆荚腐烂病的抗性。Curr Plant Biol 20:100126。https://doi.org/10.1016/j.cpb.2019.100126
特种空战部队经常被描述为“与众不同”。这是千真万确的,尽管我们的任务有时与通用部队有相似之处,但大致的相似之处也仅此而已。我们的飞机有十种不同的类型,跨越了二十年。SAWC 弹药,从外部站到炸弹舱,从吊舱式 7.62 迷你枪到机翼安装的 20 毫米机炮,从目标标记烟雾弹到三百万烛光照明弹,确实是任何标准空军部队都无法复制的种类。将这些独特的成分与在孤立地区的严苛部署相结合,没有我们正常的 Zl 维护和运营管理系统,没有对交叉训练人员的强制性需求,有效执行的挑战是显而易见的。除此之外,美国空军乃至美国的形象在全球范围内都反映在这些部队的专业素养上,因此成功应对挑战的必要性显而易见。TAC Ston/Evol 计划是我们的主要工具。不存在所谓的私人开发的程序,用于“促进、更轻松、更有效地完成维护或操作任务。无论机组人员职责或工作中心职能如何,详细的工作绩效承诺的标准化都是必不可少的。“按数字”程序允许对我们自己的人员进行最大程度的交叉培训,并确保本地同行尽早做出有效努力。最后,这样的计划为负责任的个人提供了积极的指导,以应对特殊情况的挑战,这在特种作战环境中确实是正常的。
○CO 2受精与冷却,降水抑制和中国大米和玉米的太阳辐射(Xia等,J。Geophys。 res。 Atmos。 ,2014年)○直接转移:使用火山喷发(Proctor等,Nature,2018)辐射与冷却,在SAI下,六种主要农作物的产量增加了约10%,在减少排放下(由于减少CO 2受肥而减少)降低了5%;湿度比降水的效果更大,并且对降低太阳能日期的影响没有影响(Fan.nation Food,2021)●快速终止的生态系统和生物多样性风险(Trisos等,Nat。>○CO 2受精与冷却,降水抑制和中国大米和玉米的太阳辐射(Xia等,J。Geophys。res。Atmos。,2014年)○直接转移:使用火山喷发(Proctor等,Nature,2018)辐射与冷却,在SAI下,六种主要农作物的产量增加了约10%,在减少排放下(由于减少CO 2受肥而减少)降低了5%;湿度比降水的效果更大,并且对降低太阳能日期的影响没有影响(Fan.nation Food,2021)●快速终止的生态系统和生物多样性风险(Trisos等,Nat。ecol。Evol。,2018)●SRM的人类健康影响(Trisos等,Nat。攀登。更改,2018年)
1. J. Evol。 A,R。ICHISE:日本人工智能学会的第28届年度会议,2C4-OS-22A-1(2014年)。心灵:秘密人类思维的揭秘 (Viking Adult, 2012)。9) Adams, S., Aler, I., Bach, J., Kupro, R., Goetzelben, H., Hall, J., Stores, S., Samsonovich, A., Schoitz, M., Schlesinger, M., Shapiro, Stuart, and Seo, W.;由 Shinoda, K., Ichise, R., Jepkarafau, A., Terao, A., Funakoshi, K., Matsushima, H., and Yamakawa, H. 翻译:人工智能 29, 241 (2014)。10) R. O'Reilly 和 Y. Munakata:认知神经科学的计算探索 (Bradford, 2000)。11) N. Kriegeskorte 和 PK Douglas:自然神经科学 21, 1148 (2018 年)。12)D. Hassabis、D. Kumaran、C. Summerfield 和 M. Botvinick:Neuron 95,245(2017 年)。13)https://www.kindaikagaku.co.jp/information/kd0604.htm 14)H. Yamakawa、Y. Matsuo、K. Takahashi 和 N. Arakawa:JNNS-2018,S2-1(2018 年)。15)M. Osawa、K. Mizuta、H. Yamakawa、Y. Hayashi 和 M. Imai:JNNS-2018,S2-3(2018 年)。16)R. Scott 和 N. De Freitas:arXiv:1511.06279(2015 年)。17)J. Von Neumann:自再生自动机理论(北卡罗莱纳大学伊利诺伊出版社,1967 年)。(2019 年 11 月 5 日接受)
1。A. grafen,正式的达尔文主义,个人与最大的代理类比和赌注。伦敦皇家学会的会议记录。系列B:生物科学266,799-803(1999)。 2。 S. A. West,A。S. Griffin,A。Gardner,《社会语义:利他主义,合作,互惠,强大的互惠和群体选择》。 J Evol Biol 20,415-432(2007)。 3。 M. Ghoul,A。S。Griffin,S。A。 西,走向作弊的进化定义。 Evolution 68,318-331(2014)。 4。 A. Weismann,种植质:遗传理论。 由W. Newton Parker和HarrietRönnfeldt翻译(Scribner,纽约,1893年)。 5。 S. A. West,R。M。Fisher,A。Gardner,E。T。Kiers,个性化的主要进化转变。 国家科学院学院的会议记录112,10112(2015)。 6。 A. F. Bourke,《社会进化原则》(牛津大学出版社,2011年)。 7。 M. L. Condic,Totiptency:它是什么,不是什么。 干细胞和发育23,796-812(2013)。 8。 T. C. G. Bosch,C。N。David,Hydra Magpapillata的干细胞可以分化为体细胞和生殖线细胞。 发育生物学121,182-191(1987)。 9。 W. D. Hamilton,社会行为的遗传演变。 I. J理论7,1-16(1964)。 10。 W. D. Hamilton,社会行为的遗传演变。 II。 j理论7,17-52(1964)。系列B:生物科学266,799-803(1999)。2。S. A.West,A。S. Griffin,A。Gardner,《社会语义:利他主义,合作,互惠,强大的互惠和群体选择》。J Evol Biol 20,415-432(2007)。3。M. Ghoul,A。S。Griffin,S。A。 西,走向作弊的进化定义。 Evolution 68,318-331(2014)。 4。 A. Weismann,种植质:遗传理论。 由W. Newton Parker和HarrietRönnfeldt翻译(Scribner,纽约,1893年)。 5。 S. A. West,R。M。Fisher,A。Gardner,E。T。Kiers,个性化的主要进化转变。 国家科学院学院的会议记录112,10112(2015)。 6。 A. F. Bourke,《社会进化原则》(牛津大学出版社,2011年)。 7。 M. L. Condic,Totiptency:它是什么,不是什么。 干细胞和发育23,796-812(2013)。 8。 T. C. G. Bosch,C。N。David,Hydra Magpapillata的干细胞可以分化为体细胞和生殖线细胞。 发育生物学121,182-191(1987)。 9。 W. D. Hamilton,社会行为的遗传演变。 I. J理论7,1-16(1964)。 10。 W. D. Hamilton,社会行为的遗传演变。 II。 j理论7,17-52(1964)。M. Ghoul,A。S。Griffin,S。A。西,走向作弊的进化定义。Evolution 68,318-331(2014)。4。A. Weismann,种植质:遗传理论。由W. Newton Parker和HarrietRönnfeldt翻译(Scribner,纽约,1893年)。5。S. A.West,R。M。Fisher,A。Gardner,E。T。Kiers,个性化的主要进化转变。 国家科学院学院的会议记录112,10112(2015)。 6。 A. F. Bourke,《社会进化原则》(牛津大学出版社,2011年)。 7。 M. L. Condic,Totiptency:它是什么,不是什么。 干细胞和发育23,796-812(2013)。 8。 T. C. G. Bosch,C。N。David,Hydra Magpapillata的干细胞可以分化为体细胞和生殖线细胞。 发育生物学121,182-191(1987)。 9。 W. D. Hamilton,社会行为的遗传演变。 I. J理论7,1-16(1964)。 10。 W. D. Hamilton,社会行为的遗传演变。 II。 j理论7,17-52(1964)。West,R。M。Fisher,A。Gardner,E。T。Kiers,个性化的主要进化转变。国家科学院学院的会议记录112,10112(2015)。6。A. F. Bourke,《社会进化原则》(牛津大学出版社,2011年)。 7。 M. L. Condic,Totiptency:它是什么,不是什么。 干细胞和发育23,796-812(2013)。 8。 T. C. G. Bosch,C。N。David,Hydra Magpapillata的干细胞可以分化为体细胞和生殖线细胞。 发育生物学121,182-191(1987)。 9。 W. D. Hamilton,社会行为的遗传演变。 I. J理论7,1-16(1964)。 10。 W. D. Hamilton,社会行为的遗传演变。 II。 j理论7,17-52(1964)。A. F. Bourke,《社会进化原则》(牛津大学出版社,2011年)。7。M. L. Condic,Totiptency:它是什么,不是什么。干细胞和发育23,796-812(2013)。8。T. C. G. Bosch,C。N。David,Hydra Magpapillata的干细胞可以分化为体细胞和生殖线细胞。发育生物学121,182-191(1987)。9。W. D. Hamilton,社会行为的遗传演变。I. J理论7,1-16(1964)。 10。 W. D. Hamilton,社会行为的遗传演变。 II。 j理论7,17-52(1964)。I. J理论7,1-16(1964)。10。W. D. Hamilton,社会行为的遗传演变。II。 j理论7,17-52(1964)。II。j理论7,17-52(1964)。
人类驱动的栖息地丧失被认为是生物多样性危机的最大原因,但迄今为止,我们缺乏可靠的,空间显式的指标,无法量化栖息地范围对物种灭绝的影响的人为变化的影响。现有指标无法考虑物种身份,或者仅专注于最近的栖息地损失。Durán等人开发的持久分数方法。(Durán等人2020方法ECOL。Evol。11,910–921(doi:10.1111/2041-210x.13427)通过将物种的生态和土地覆盖数据相结合,同时考虑了过去栖息地损失对物种灭绝的可能性的累积和非线性影响,这代表了重要的发展。但是,它在计算上是要求的,从而限制了其全局使用和应用。在这里,我们将持久性得分方法与高性能计算相结合,以生成30 875种陆生脊椎动物的寿命(土地覆盖变化对未来灭绝的影响)的全球地图(在1 Arc-min分辨率(在赤道为3.4 km 2))。这些地图首次提供了定量估计值,即预期的灭绝数量(增加和减少)的边际变化是由于将剩余的自然植被转化为农业而引起的,并将农田恢复为自然栖息地。我们从统计学上证明,这种方法整合了有关物种丰富性,特有和过去栖息地丧失的信息。本文是讨论会议问题的一部分,“弯曲自然恢复的曲线:基于乔治娜·梅斯(Georgina Mace)的生物多样性未来的遗产”。我们所产生的地图可在0.5–1000 km 2的尺度上使用,并提供前所未有的机会,以估算影响土地覆盖变化的各种行动的影响,从个人饮食选择到全球保护区的发展。
1。Vorgia E.,M。Lamprousi,S。Denecke,K。Vogelsang,S。Geibel等,2021年的功能特征和转录组中的中腹细胞系中的中腹细胞系(Lep-Idoptera:noctuidae)。昆虫生物化学。mol。生物。128:103510。https://doi.org/10.1016/j.ibmb.2020.103510 2。Swevers L.,S。Denecke,K。Vogelsang,S。Geibel和J. Vontas,2020年,哺乳动物类器官技术可以应用于昆虫肠道吗?害虫管理。SCI。 77:55–63。 https://doi.org/10.1002/ps.6067 3。 DENECKE S.* M.,O。DRIVA,H。N. B. Luong,P。Ioannidis,M。Linka等,2020年,溶质载体超家族在节肢动物中的识别和进化趋势。 基因组生物。 Evol。 12:1429–1439。 https://doi.org/10.1093/gbe/evaa153 4。 Samantsidis G.-R.,R。Panteleri,S。Denecke,S。Kounadi,I。Christou等,2020年,“我无法创造的东西,我不理解”:在功能验证的代谢和目标位点昆虫抗药性的协同作用。 proc。 R. Soc。 B Biol。 SCI。 287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。 douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。 农药。 生物化学。 生理学。 167。https://doi.org/10.1016/j.pestbp.2020.1045956。 昆虫分子。 生物。 29:363–372。 https://doi.org/10.1111/imb.12640 7。SCI。77:55–63。https://doi.org/10.1002/ps.6067 3。 DENECKE S.* M.,O。DRIVA,H。N. B. Luong,P。Ioannidis,M。Linka等,2020年,溶质载体超家族在节肢动物中的识别和进化趋势。 基因组生物。 Evol。 12:1429–1439。 https://doi.org/10.1093/gbe/evaa153 4。 Samantsidis G.-R.,R。Panteleri,S。Denecke,S。Kounadi,I。Christou等,2020年,“我无法创造的东西,我不理解”:在功能验证的代谢和目标位点昆虫抗药性的协同作用。 proc。 R. Soc。 B Biol。 SCI。 287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。 douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。 农药。 生物化学。 生理学。 167。https://doi.org/10.1016/j.pestbp.2020.1045956。 昆虫分子。 生物。 29:363–372。 https://doi.org/10.1111/imb.12640 7。https://doi.org/10.1002/ps.6067 3。DENECKE S.* M.,O。DRIVA,H。N. B. Luong,P。Ioannidis,M。Linka等,2020年,溶质载体超家族在节肢动物中的识别和进化趋势。基因组生物。Evol。12:1429–1439。https://doi.org/10.1093/gbe/evaa153 4。Samantsidis G.-R.,R。Panteleri,S。Denecke,S。Kounadi,I。Christou等,2020年,“我无法创造的东西,我不理解”:在功能验证的代谢和目标位点昆虫抗药性的协同作用。proc。R. Soc。 B Biol。 SCI。 287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。 douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。 农药。 生物化学。 生理学。 167。https://doi.org/10.1016/j.pestbp.2020.1045956。 昆虫分子。 生物。 29:363–372。 https://doi.org/10.1111/imb.12640 7。R. Soc。B Biol。 SCI。 287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。 douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。 农药。 生物化学。 生理学。 167。https://doi.org/10.1016/j.pestbp.2020.1045956。 昆虫分子。 生物。 29:363–372。 https://doi.org/10.1111/imb.12640 7。B Biol。SCI。 287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。 douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。 农药。 生物化学。 生理学。 167。https://doi.org/10.1016/j.pestbp.2020.1045956。 昆虫分子。 生物。 29:363–372。 https://doi.org/10.1111/imb.12640 7。SCI。287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。农药。生物化学。生理学。167。https://doi.org/10.1016/j.pestbp.2020.1045956。昆虫分子。生物。29:363–372。https://doi.org/10.1111/imb.12640 7。Koidou V.,S。Denecke*,P。Ioannidis,I。Vlatakis,I。Livadaras等,2020年,有效的CRISPR/CAS9介导的基因组介导的基因组编辑。denecke s*。,P。ioannidis*,B。Buer,A。Ilias,V。Douris等,2020年,Nezara Viridula(杂翅目:五翅目:pentatomidae)中表达的转录组和蛋白质组学图,Midgut提出了心苯基植物的分类性,并表明了心齿植物的分类。BMC基因组学21:129。https://doi.org/10.1186/S12864-020-6459-6 8。Riga M.,S。Denecke*,I。Livadaras,S。Geibel,R。Nauen等,2020年,在Nezara viridula中开发有效RNAi,用于杀虫剂靶标。拱门。昆虫生物化学。生理学。103:E21650。 https://doi.org/10.1002/arch.21650 9。 Young H. K.,S。M. Denecke,C。Robin和A. Fournier级,2019年,幼虫暴露于咪二藻中的幼虫会影响果蝇中的成人行为。 J. Evol。 生物。 33:151–164。 https://doi.org/10.1111/jeb.13555 10。 Denecke S*。,L。Swevers,V。Douris和J. Vontas,2018年,口腔杀虫化合物如何穿越昆虫中肠上皮? 昆虫生物化学。 mol。 生物。 103:22–35。 https://doi.org/10.1016/ j.ibmb.2018.10.005 11。 harrop T. W.r§。,S。Denecke§,Y。T。Yang,J。Chan,P。J。Daborn等,2018,通过果蝇中的线粒体细胞色素P450激活Nitenpyram的证据。 害虫管理。 SCI。 74:1616–1622。 https://doi.org/10.1002/ps.4852 12. 昆虫生物化学。 mol。103:E21650。https://doi.org/10.1002/arch.21650 9。Young H. K.,S。M. Denecke,C。Robin和A. Fournier级,2019年,幼虫暴露于咪二藻中的幼虫会影响果蝇中的成人行为。J. Evol。 生物。 33:151–164。 https://doi.org/10.1111/jeb.13555 10。 Denecke S*。,L。Swevers,V。Douris和J. Vontas,2018年,口腔杀虫化合物如何穿越昆虫中肠上皮? 昆虫生物化学。 mol。 生物。 103:22–35。 https://doi.org/10.1016/ j.ibmb.2018.10.005 11。 harrop T. W.r§。,S。Denecke§,Y。T。Yang,J。Chan,P。J。Daborn等,2018,通过果蝇中的线粒体细胞色素P450激活Nitenpyram的证据。 害虫管理。 SCI。 74:1616–1622。 https://doi.org/10.1002/ps.4852 12. 昆虫生物化学。 mol。J. Evol。生物。33:151–164。https://doi.org/10.1111/jeb.13555 10。Denecke S*。,L。Swevers,V。Douris和J. Vontas,2018年,口腔杀虫化合物如何穿越昆虫中肠上皮?昆虫生物化学。mol。生物。103:22–35。https://doi.org/10.1016/ j.ibmb.2018.10.005 11。harrop T. W.r§。,S。Denecke§,Y。T。Yang,J。Chan,P。J。Daborn等,2018,通过果蝇中的线粒体细胞色素P450激活Nitenpyram的证据。害虫管理。SCI。 74:1616–1622。 https://doi.org/10.1002/ps.4852 12. 昆虫生物化学。 mol。SCI。74:1616–1622。https://doi.org/10.1002/ps.4852 12. 昆虫生物化学。 mol。https://doi.org/10.1002/ps.4852 12.昆虫生物化学。mol。denecke s。,R。Fusetto和P. Batterham,2017年,使用CRISPR-CAS9敲除果蝇Melanogaster ABC转运蛋白在杀虫剂生物学中的作用。生物。91:1-9。 https://doi.org/10.1016/j.ibmb.2017.09.017 13。 DeNecke S.,R。Fusetto,F。Martelli,A。Giang,P。Battlay等,2017,2017年多个P450和神经元基因的变化,这是对果蝇大众群中对杀虫剂咪二酸的反应。 SCI。 Rep。7:11338。https://doi.org/10.1038/S41598-017-11092-5 14。 Fusetto R.,S。Denecke,T。Perry,R。A。J. O'Hair和P. Batterham,2017年,将CYP6G1和肠道微生物在果蝇中杀虫剂咪二氯吡啶的代谢中的作用分开。 SCI。 Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。 DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。 PLOS ONE 10:E0145051。 https://doi.org/10.1371/journal.pone.014505191:1-9。https://doi.org/10.1016/j.ibmb.2017.09.017 13。DeNecke S.,R。Fusetto,F。Martelli,A。Giang,P。Battlay等,2017,2017年多个P450和神经元基因的变化,这是对果蝇大众群中对杀虫剂咪二酸的反应。SCI。 Rep。7:11338。https://doi.org/10.1038/S41598-017-11092-5 14。 Fusetto R.,S。Denecke,T。Perry,R。A。J. O'Hair和P. Batterham,2017年,将CYP6G1和肠道微生物在果蝇中杀虫剂咪二氯吡啶的代谢中的作用分开。 SCI。 Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。 DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。 PLOS ONE 10:E0145051。 https://doi.org/10.1371/journal.pone.0145051SCI。Rep。7:11338。https://doi.org/10.1038/S41598-017-11092-5 14。 Fusetto R.,S。Denecke,T。Perry,R。A。J. O'Hair和P. Batterham,2017年,将CYP6G1和肠道微生物在果蝇中杀虫剂咪二氯吡啶的代谢中的作用分开。 SCI。 Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。 DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。 PLOS ONE 10:E0145051。 https://doi.org/10.1371/journal.pone.0145051Rep。7:11338。https://doi.org/10.1038/S41598-017-11092-5 14。Fusetto R.,S。Denecke,T。Perry,R。A。J. O'Hair和P. Batterham,2017年,将CYP6G1和肠道微生物在果蝇中杀虫剂咪二氯吡啶的代谢中的作用分开。SCI。 Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。 DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。 PLOS ONE 10:E0145051。 https://doi.org/10.1371/journal.pone.0145051SCI。Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。 DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。 PLOS ONE 10:E0145051。 https://doi.org/10.1371/journal.pone.0145051Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。PLOS ONE 10:E0145051。https://doi.org/10.1371/journal.pone.0145051
1。Long,H。K.,Prescott,S。L.&Wysocka,J。不断变化的景观:开发和进化中的转录增强子。单元格167,1170–1187(2016)。2。Nora,E。P。等。 X灭活中心的调节景观的空间分区。 自然485,381–385(2012)。 3。 Dixon,J。R.等。 通过分析染色质相互作用鉴定的哺乳动物基因组中的拓扑结构域。 自然485,376–380(2012)。 4。 Wray,G。A. 顺式调节突变的进化意义。 nat。 修订版 基因。 8,206–216(2007)。 5。 Lopez-Rios,J。等。 PTCH1对SHH的衰减感下牛四肢的演变。 自然511,46–51(2014)。 6。 Sanetra,M.,Begemann,G.,Becker,M.-B。 &Meyer,A。 在发展计划中的保护和合作:同源关系的重要性。 正面。 Zool。 2,15(2005)。 7。 McLennan,D。A. 合作的概念:为什么进化通常看起来奇迹般。 Evol。 教育。 外展1,247–258(2008)。 8。 Holland,L。Z.整个基因组重复后新字符的演变:来自Amphioxus的见解。 semin。 单元格开发。 生物。 24,101–109(2013)。 9。 Jandzik,D。等。 自然518,534–537(2015)。 10。 11。 12。Nora,E。P。等。X灭活中心的调节景观的空间分区。自然485,381–385(2012)。3。Dixon,J。R.等。通过分析染色质相互作用鉴定的哺乳动物基因组中的拓扑结构域。自然485,376–380(2012)。4。Wray,G。A.顺式调节突变的进化意义。nat。修订版基因。8,206–216(2007)。 5。 Lopez-Rios,J。等。 PTCH1对SHH的衰减感下牛四肢的演变。 自然511,46–51(2014)。 6。 Sanetra,M.,Begemann,G.,Becker,M.-B。 &Meyer,A。 在发展计划中的保护和合作:同源关系的重要性。 正面。 Zool。 2,15(2005)。 7。 McLennan,D。A. 合作的概念:为什么进化通常看起来奇迹般。 Evol。 教育。 外展1,247–258(2008)。 8。 Holland,L。Z.整个基因组重复后新字符的演变:来自Amphioxus的见解。 semin。 单元格开发。 生物。 24,101–109(2013)。 9。 Jandzik,D。等。 自然518,534–537(2015)。 10。 11。 12。8,206–216(2007)。5。Lopez-Rios,J。等。PTCH1对SHH的衰减感下牛四肢的演变。 自然511,46–51(2014)。 6。 Sanetra,M.,Begemann,G.,Becker,M.-B。 &Meyer,A。 在发展计划中的保护和合作:同源关系的重要性。 正面。 Zool。 2,15(2005)。 7。 McLennan,D。A. 合作的概念:为什么进化通常看起来奇迹般。 Evol。 教育。 外展1,247–258(2008)。 8。 Holland,L。Z.整个基因组重复后新字符的演变:来自Amphioxus的见解。 semin。 单元格开发。 生物。 24,101–109(2013)。 9。 Jandzik,D。等。 自然518,534–537(2015)。 10。 11。 12。PTCH1对SHH的衰减感下牛四肢的演变。自然511,46–51(2014)。6。Sanetra,M.,Begemann,G.,Becker,M.-B。 &Meyer,A。 在发展计划中的保护和合作:同源关系的重要性。 正面。 Zool。 2,15(2005)。 7。 McLennan,D。A. 合作的概念:为什么进化通常看起来奇迹般。 Evol。 教育。 外展1,247–258(2008)。 8。 Holland,L。Z.整个基因组重复后新字符的演变:来自Amphioxus的见解。 semin。 单元格开发。 生物。 24,101–109(2013)。 9。 Jandzik,D。等。 自然518,534–537(2015)。 10。 11。 12。Sanetra,M.,Begemann,G.,Becker,M.-B。&Meyer,A。在发展计划中的保护和合作:同源关系的重要性。正面。Zool。2,15(2005)。7。McLennan,D。A.合作的概念:为什么进化通常看起来奇迹般。Evol。教育。外展1,247–258(2008)。8。Holland,L。Z.整个基因组重复后新字符的演变:来自Amphioxus的见解。semin。单元格开发。生物。24,101–109(2013)。 9。 Jandzik,D。等。 自然518,534–537(2015)。 10。 11。 12。24,101–109(2013)。9。Jandzik,D。等。 自然518,534–537(2015)。 10。 11。 12。Jandzik,D。等。自然518,534–537(2015)。10。11。12。新脊椎动物头的进化是通过古老的脊柱骨骼组织的选择。Chuong,E。B.,Elde,N。C.&Feschotte,C。通过合作的内源性逆转录病毒对先天免疫的调节性进化。科学351,1083–1087(2016)。Real,F。M.等。 摩尔基因组揭示了与适应性性交相关的调节重排。 科学370,208–214(2020)。 迈凯轮,A。小鼠中的原始生殖细胞。 dev。 生物。 262,1-15(2003)。 13。 Ramisch,A。等。 crup:一个综合框架,可预测特定条件的监管单位。 基因组生物。 20,227(2019)。 14。 Adrian,T。E.等。 神经肽在人脑中的分布。 自然306,584–586(1983)。 15。 Körner,M.,Waser,B.,Thalmann,G。N.&Reubii,J。C.人类睾丸中NPY受体的高表达。 mol。 单元格。 内分泌。 337,62–70(2011)。 16。 Sweetman,D。&Münsterberg,A。 发育和疾病中的脊椎动物尖顶基因。 dev。 生物。 293,285–293(2006)。 17。 Nishinakamura,R。&Takasato,M。Sall1在肾脏发展中的重要作用。 肾脏Int。 68,1948–1950(2005)。 18。 Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。 &Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。 nat。 基因。 19。Real,F。M.等。摩尔基因组揭示了与适应性性交相关的调节重排。科学370,208–214(2020)。迈凯轮,A。小鼠中的原始生殖细胞。dev。生物。262,1-15(2003)。 13。 Ramisch,A。等。 crup:一个综合框架,可预测特定条件的监管单位。 基因组生物。 20,227(2019)。 14。 Adrian,T。E.等。 神经肽在人脑中的分布。 自然306,584–586(1983)。 15。 Körner,M.,Waser,B.,Thalmann,G。N.&Reubii,J。C.人类睾丸中NPY受体的高表达。 mol。 单元格。 内分泌。 337,62–70(2011)。 16。 Sweetman,D。&Münsterberg,A。 发育和疾病中的脊椎动物尖顶基因。 dev。 生物。 293,285–293(2006)。 17。 Nishinakamura,R。&Takasato,M。Sall1在肾脏发展中的重要作用。 肾脏Int。 68,1948–1950(2005)。 18。 Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。 &Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。 nat。 基因。 19。262,1-15(2003)。13。Ramisch,A。等。crup:一个综合框架,可预测特定条件的监管单位。基因组生物。20,227(2019)。14。Adrian,T。E.等。神经肽在人脑中的分布。自然306,584–586(1983)。15。Körner,M.,Waser,B.,Thalmann,G。N.&Reubii,J。C.人类睾丸中NPY受体的高表达。 mol。 单元格。 内分泌。 337,62–70(2011)。 16。 Sweetman,D。&Münsterberg,A。 发育和疾病中的脊椎动物尖顶基因。 dev。 生物。 293,285–293(2006)。 17。 Nishinakamura,R。&Takasato,M。Sall1在肾脏发展中的重要作用。 肾脏Int。 68,1948–1950(2005)。 18。 Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。 &Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。 nat。 基因。 19。Körner,M.,Waser,B.,Thalmann,G。N.&Reubii,J。C.人类睾丸中NPY受体的高表达。mol。单元格。内分泌。337,62–70(2011)。16。Sweetman,D。&Münsterberg,A。发育和疾病中的脊椎动物尖顶基因。dev。生物。293,285–293(2006)。 17。 Nishinakamura,R。&Takasato,M。Sall1在肾脏发展中的重要作用。 肾脏Int。 68,1948–1950(2005)。 18。 Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。 &Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。 nat。 基因。 19。293,285–293(2006)。17。Nishinakamura,R。&Takasato,M。Sall1在肾脏发展中的重要作用。 肾脏Int。 68,1948–1950(2005)。 18。 Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。 &Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。 nat。 基因。 19。Nishinakamura,R。&Takasato,M。Sall1在肾脏发展中的重要作用。肾脏Int。 68,1948–1950(2005)。 18。 Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。 &Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。 nat。 基因。 19。肾脏Int。68,1948–1950(2005)。 18。 Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。 &Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。 nat。 基因。 19。68,1948–1950(2005)。18。Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。 &Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。 nat。 基因。 19。Kohlhase,J.,Wischermann,A.,Reichenbach,H.,Froster,U。&Engel,W。SALL1推定转录因子基因的突变导致Townes-Brocks综合征。nat。基因。19。18,81–83(1998)。 MA,Y。等。 sall1在人垂体 - 肾上腺/性腺轴中的表达。 J.内分泌。 173,437–448(2002)。 20。 Nicol,B。等。 全基因组的鉴定FOXL2结合和FOXL2在胎儿性腺中女性化作用的表征。 哼。 mol。 基因。 27,4273–4287(2018)。18,81–83(1998)。MA,Y。等。 sall1在人垂体 - 肾上腺/性腺轴中的表达。 J.内分泌。 173,437–448(2002)。 20。 Nicol,B。等。 全基因组的鉴定FOXL2结合和FOXL2在胎儿性腺中女性化作用的表征。 哼。 mol。 基因。 27,4273–4287(2018)。MA,Y。等。sall1在人垂体 - 肾上腺/性腺轴中的表达。J.内分泌。173,437–448(2002)。 20。 Nicol,B。等。 全基因组的鉴定FOXL2结合和FOXL2在胎儿性腺中女性化作用的表征。 哼。 mol。 基因。 27,4273–4287(2018)。173,437–448(2002)。20。Nicol,B。等。 全基因组的鉴定FOXL2结合和FOXL2在胎儿性腺中女性化作用的表征。 哼。 mol。 基因。 27,4273–4287(2018)。Nicol,B。等。全基因组的鉴定FOXL2结合和FOXL2在胎儿性腺中女性化作用的表征。哼。mol。基因。27,4273–4287(2018)。27,4273–4287(2018)。