智能电网电网的数字化为能源市场中参与的生产商和其他利益相关者提供了增值服务,并可能破坏智能城市中现有的电力服务。使用电动汽车(EV)不仅挑战智能电网的可持续性,而且促进和刺激其升级。不可否认地,通过部署车辆到网格(V2G)和车辆(G2V),通过双向通信积极促进智能电网的开发。电动汽车具有环境利益,因为它们可以帮助最大程度地减少噪声水平,污染和温室气体排放。电动汽车的整合不仅可以在提供运输服务方面为社会带来重大变化,还可以使经济体从石油转移并减少运输部门的二氧化碳(CO 2)。因此,本研究采用文献中的辅助数据来探讨电动汽车如何在智能城市中作为服务业务模型实现可持续能源。这项研究的发现表明,电动汽车是可持续能源未来的主要资产,因为电动汽车电池提供了一个未开发的机会,可以从可再生能源中存储电力。本研究的含义讨论了智能城市中电动汽车整合的问题和建议。
电动汽车 (EV) 有可能通过双向充电技术作为储能解决方案,该技术使它们既可以从电网、家庭或其他车辆获取电力,又可以将电力反馈给电网、家庭或其他车辆。这种能力使电动汽车能够减少排放、优化成本,并通过在高产量期间储存能源并在高需求时供应能源来支持电网。在这篇愿景论文中,我们专注于释放电动汽车作为储能解决方案的潜力,同时确保它们随时可用于运输,这是它们的主要用途。一个重大的研究空白是,大多数当前研究都优先考虑能源管理,通常使用过于简单的方法,不足以满足电动汽车车主的出行需求。我们相信数据库社区可以发挥重要作用,最大限度地发挥电动汽车作为交通和储能的双重作用。我们为各种电动汽车利益相关者(包括个人电动汽车车主、独立但合作的电动汽车群体、商业电动汽车车队和自动驾驶电动汽车)列出了一份非详尽的研究方向清单,并希望激发数据库社区进一步探索。
摘要:细胞外囊泡的分泌,EVS,是原核生物和真核细胞的常见过程,用于细胞间交流,生存和发病机理。先前的研究表明,来自细菌纯培养物的上清液中的EV存在,包括革兰氏阳性和革兰氏阴性的聚糖降解肠道分子。但是,复杂微生物群落分泌的电动汽车的隔离和表征尚未清楚地报告。在最近的一篇论文中,我们表明,木材衍生的复杂β -mannan与常规饮食纤维具有结构性相似,可用于调节猪肠道肠道菌群的组成和活性。在本文中,我们研究了24小时在复合β -Mannan富集后,猪粪便菌群分泌的EV的产生,大小,组成和蛋白质组。使用透射电子显微镜和纳米颗粒跟踪分析,我们以165 nm的平均大小识别电动汽车。我们利用猪蛋白的基于质谱的元蛋白质蛋白基于猪蛋白的数据库,并从猪群中鉴定出355个元基因组组装的基因组(MAG),从而鉴定出303蛋白。对于从β -mannan生长的培养物中分离出来的EV,大多数蛋白质映射到两个MAGS MAG53和MAG272,分别属于梭菌和细菌。此外,具有第三次蛋白质的MAG为MAG 343,属于肠杆菌阶。在β -Mannan EV蛋白质组中检测到的最丰富的蛋白质参与了翻译,能量产生,氨基酸和碳水化合物转运以及代谢。总体而言,这项概念验证研究表明,从复杂的微生物群落中释放出的电动汽车的成功隔离。此外,电动汽车的蛋白质含量反映了特定微生物对可用碳水化合物源的响应。
Glenn Barnes,CDISC 临床样本和数据管理高级顾问 Christine Connolly,CDISC 标准开发高级项目经理 Erin Muhlbradt 博士,NCI/EVS 临床/生物医学信息专家 Jon Neville,CDISC 高级标准开发人员
摘要:细胞外囊泡 (EV) 因其纳米级尺寸、稳定性和生物相容性而极有希望成为药物输送载体。EV 具有天然的靶向能力,可以穿越很长的距离到达目标细胞。这种长距离器官趋向性和穿透难以到达的组织(包括大脑)的能力引起了人们对使用 EV 进行药物靶向输送的兴趣。此外,EV 可以从个人的生物体液中轻松获取,使其特别适合个性化医疗应用。然而,未经修饰的 EV 的靶向能力已被证明不足以用于临床应用。人们曾多次尝试对 EV 进行生物工程改造,以微调其靶向结合。在这里,我们总结了有关天然 EV 天然靶向能力的当前知识状态。我们还批判性地讨论了使 EV 表面功能化的策略,以实现对特定组织和细胞的卓越长距离靶向性。最后,我们回顾了实现 EV 纳米载体特定靶向结合所面临的挑战。
减少尾气排放:纯电动汽车不产生温室气体尾气排放。插电式混合动力电动汽车的排放量远低于汽油发动机。 生命周期排放更少:电动汽车的生命周期排放量比普通汽油动力汽车少 80%(彭比纳研究所)。 燃料成本低:电动汽车的燃料成本大约比汽油汽车低 5 倍。目前,低陆平原地区的一些市政当局和私营企业为电动汽车提供免费公共充电,从而进一步节省燃料成本。 维护成本更低:电动汽车只有 18 到 20 个活动部件,而汽油动力汽车则有 2000 多个,因此所需的维护成本要少得多。 健康益处:随着我们转向电动汽车,汽车尾气造成的空气污染将减少。电动汽车也更安静,这意味着噪音污染更少。 通勤速度更快:拥有电动汽车的 BC 居民可以通过展示电动汽车标牌进入高乘载车辆 (HOV) 车道。
头部和颈部鳞状细胞癌(HNSCC)是影响人类健康的主要恶性肿瘤之一,主要是由于诊断延迟和侵入性高。Extracellular vehicles (EVs) are membranous vesicles released by cells into the extracellular matrix that carry important signalling molecules and stably and widely exist in various body fluids, such as plasma, saliva, cerebrospinal fluid, breast milk, urine, semen, lymphatic fluid, synovial fluid, amniotic fluid, and sputum.evs传输几乎所有类型的生物活性分子(DNA,mRNA,microRNA(miRNA),蛋白质,代谢物,甚至药理化合物)。这些“货物”可以对受体细胞作用,重塑周围的微环境并改变遥远的靶标,最终影响其生物学行为。对电动汽车的广泛探索加深了我们对HNSCC生物学的全面理解。在这篇综述中,我们不仅总结了HNSCC衍生的EV对肿瘤微环境的影响,而且还描述了微环境衍生的EV在HNSCC中的作用,并讨论了肿瘤和微环境之间的“相互对话”如何介导生长,转移性,远离抗药性,免疫,抗药性,抗药性,抗药性,抗药性,抗药性,抗药性。最后,评估了电动汽车在HNSCC中的临床应用。
摘要 - 最近,住宅停车场中越来越多的电动汽车(EV)已成为一个重要的问题,因为过多的电动汽车可能会在高峰时段破坏电力系统的稳定,并要求高充电功率。当住宅停车场的电力系统采用微电网(MG)的结构时,电动汽车的电源提供需要有效的电力管理计划。为了最大程度地降低MG的维护成本并保持网格稳定性,MG需要平衡停车站电动汽车的充电/放电能力。为了实现这些目标,本文提出了一种适用于配置电动汽车的MG电源管理的充电/排放算法。多目标优化用于MG,以最大程度地降低维护成本和网格依赖性,同时最大程度地利用光伏(PV)功率,并利用EV作为储能系统(ESSS)。在我们的方法中,为了增加电动汽车的释放功率的实用性,基本负载和PV功率生产被考虑以减轻它们之间产生的不平衡。与其他可比性相比,提出的方法表明了卓越的功率管理性能。
案例研究案例1:硅是扩大锂电池功率的关键吗?锂电池是当今许多电动汽车和电气设备的领先电源。石墨通常是由于其成本效率,可访问性和高能量密度而在这些电池内使用的电极或导体。但是,如果电动汽车(EVS)将在全球范围内更换内燃机,我们将需要电池寿命增强和更高的能源效率的电池,并可以与内燃机的驾驶范围竞争。根据能源部(DOE)的最新估计,2021年型号EVS的中位驾驶范围约为汽油动力汽车的60%。3个里程和能源容量的性能期望超过了石墨lithium电池的当前功能。在最近的电化学研究中,硅已经成为潜在的解决方案。赖斯大学的最新研究表明,硅可以包含比石墨可以并改善阳极能量密度更多的锂离子,从而提高能量效率。4