目前正在研究以聚(ADP-核糖)糖基水解酶 (PARG) 为靶点治疗各种癌症,但我们对导致癌细胞易受这种定制疗法影响的特定遗传弱点了解甚少。此外,识别此类弱点对于靶向 BRCA2;p53 缺陷型肿瘤很有意义,这些肿瘤通过 PARG 表达丧失而获得对聚(ADP-核糖)聚合酶抑制剂 (PARPi) 的耐药性。在这里,通过进行全基因组 CRISPR/Cas9 缺失筛选,我们识别出参与 DNA 修复的各种基因,这些基因对于 PARG;BRCA2;p53 缺陷型细胞的存活至关重要。特别是,我们的研究结果揭示了 EXO1 和 FEN1 是 PARG 缺失的主要合成致死相互作用因子。我们提供了证据表明,在 PARG;BRCA2;p53 缺陷细胞中,复制叉进展、DNA 单链断裂修复和冈崎片段处理受损,这些改变加剧了 EXO1/FEN1 抑制的效果,并在这种情况下变得致命。由于这种敏感性取决于 BRCA2 缺陷,我们建议在失去 PARG 活性的 PARPi 抗性肿瘤中靶向 EXO1/FEN1。此外,EXO1/FEN1 靶向可能是增强 PARG 抑制剂在同源重组缺陷肿瘤中效果的有效策略。
抽象的DNA复制面临着源自内源性或E X强度来源的DNA病变的挑战,导致单链DNA(SSDNA)的积累,从而触发了Atr c Hec Kpoint响应的激活。为在存在受损的DNA的情况下完成基因组复制,细胞采用DNA损伤耐受机制,不仅在停滞的复制叉上运行,而且在ssDNA间隙下,源自病变下游DNA合成的SSDNA间隙。在这里,我们证明了人类细胞积累了复制后的ssDNA间隙。t hese间隙,由远程切除exo1和dna2引起了b y p rimpol谴责,并构成了与失速的叉子相比,ssDNA信号的主要起源是负责复制应力的ATR激活的主要起源。引人注目的是,当与BRCA1缺乏症结合使用时,EXO1或DNA2的丢失会导致合成致死性,但不能导致BR Ca2。他的现象与仅BRCA1仅有助于ssDNA间隙的扩展的观察结果一致。非常明显的是,BRCA1缺陷型细胞会上瘾Exo1,DNA2或BLM的Xpression。他对Br Ca1突变肿瘤的远距离切除术的依赖,从而阐明了这些癌症的潜在治疗靶标。
DNA双链断裂(DSB),以确保基因组稳定性。至关重要的是,必须将DSB末端保持在一起才能及时修复。在酿酒酵母中,两种知之甚少的途径介导了DSB的终端。使用MRE11-RAD50-XRS2(MRX)复合物在物理上桥接DSB末端。另一个要求DSB通过EXO1转换为单链DNA(ssDNA),但桥接蛋白是未知的。我们发现该粘着蛋白,其加载器和SMC5/6用EXO1作用于Tether DSB末端。非常明显的是,寡聚中特异性受损的粘着蛋白未能束缚DSB,从而揭示了粘着蛋白寡聚的新功能。除了姐妹染色单体内聚力的已知重要性外,基于显微镜的微流体实验通过确保DSB终端连接来揭示凝聚蛋白在修复中的新作用。总的来说,我们的发现表明,粘着蛋白的低聚可防止DSB的末端分离并促进DSB修复,从而揭示了粘连在保护基因组完整性中的新型作用和作用。
泛素化是通过电离辐射(IR)诱导的DNA双链断裂(DSB)的正确修复所需的至关重要的翻译后修饰。dsbs主要通过同源重组(HR)修复,并且在不存在的情况下非同源末端连接(NHEJ)。此外,微型学介导的终端连接(MMEJ)和单链退火(SSA)提供了备份DSBS修复途径。然而,控制其使用的机制仍然知之甚少。通过在IR之后使用泛素系统的高分辨率CRISPR筛选,我们会系统地揭示细胞存活所需的基因,并阐明E3泛素连接酶SCF Cyclin F在依赖细胞周期依赖性DSB修复中的关键作用。我们表明,SCF细胞周期蛋白介导的EXO1降解可防止有丝分裂中的DNA末端切除,从而允许MMEJ发生。此外,我们确定了一个保守的细胞周期蛋白识别基序,与其他细胞周期蛋白所使用的基序不同,对细胞周期蛋白的特异性具有广泛的影响。
同源重组因子在 DNA 复制过程中对保护新生 DNA 起着至关重要的作用,但染色质在此过程中的作用尚不清楚。在这里,我们使用了已知可在酿酒酵母中诱导位点特异性复制叉停滞的细菌 Tus/Ter 屏障。我们报告称,Set1C 亚基 Spp1 被募集到停滞的复制叉后面,与其与 Set1 的相互作用无关。Spp1 染色质募集依赖于其 PHD 结构域与沉积在停滞叉后面的 H3K4me3 亲本组蛋白的相互作用。它的募集通过限制 Exo1 的访问来防止 ssDNA 在停滞叉处积累。我们进一步表明,删除 SPP 1 会增加屏障上游的突变率,有利于微缺失的积累。最后,我们报告称 Spp1 保护 Tus/Ter 停滞复制叉处的新生 DNA。我们认为 Spp1 限制了叉的重塑,最终限制了新生 DNA 对核酸酶的利用。
皮瓣核酸内切酶1(Fen1)是一种结构特异性的金属核酸酶,在复制和修复过程中切割5'DNA瓣。fen1是开发抗癌疗法的有吸引力的靶标,因为它在许多肿瘤类型中过表达,并且具有大量的合成致死性伴侣,包括同源重组基因(HR)途径(Mengwasser等,2019; Guo等,2020)。利用基于碎片的药物发现(FBDD)方法,我们确定了一种新型的金属结合药效团,该药效团与Fen1活性位点中的两个镁离子结合。使用碎片增长策略进一步阐述导致高度有效和选择性抑制剂。在生物化学测定中(分别为7 nm和460 nm的IC50),对FEN1的当前铅(BSM-1516)对FEN1的有效性比其相关酶外核酸酶1(EXO1)高65倍,与早期努力相比,改善了量的更大范围。fen1靶标在活细胞中的靶标参与通过细胞热偏移分析验证(CETSA
非同源最终连接(NHEJ)因素在复制叉保护,重新启动和维修中。在这里,我们确定了一种与RNA相关的机制:在裂变酵母中建立NHEJ因子KU介导的障碍物的DNA杂种。rNase H活性促进新生的链降解和复制重新开始,RNase H2在处理RNA中的重要作用:DNA杂种以克服新生链降解的KU级杂种。rNase H2与MRN-CTP1轴合作,以KU的方式维持对复制应激的抗性。从机械上讲,新生链降解中RNAseH2的需求需要培养基活性,该活动允许建立KU级驻射击器exo1,而损害Okazaki碎片的成熟会加强KU驻式甲壳。最后,复制应力以原始酶依赖性方式诱导KU灶,并有利于KU结合与RNA:DNA杂交。我们提出了RNA的功能:DNA杂交源自冈崎片段的DNA杂交,以控制KU驻式核能指定核酸酶的要求,以使分叉切除。
简介:三阴性乳腺癌(TNBC)的特征是没有雌激素受体(ER),孕酮受体(PR)和人表皮生长因子受体2(HER2)表达。它具有高度侵入性和侵略性,使其成为预后最差的乳腺癌的亚型。目前,全身化疗是主要的治疗选择,但靶向疗法仍然无法使用。因此,迫切需要确定新型的生物标志物来早期诊断和治疗TNBC。方法:我们对转录组和甲基化数据进行了综合分析,以鉴定甲基化调节的差异表达基因(MDEGS)。基因本体论(GO)分析,基因和基因组(KEGG)途径分析的京都百科全书,以及蛋白质 - 蛋白质相互作用(PPI)网络分析,以研究HUB基因对TNBC诊断和预后的影响。随后,使用逆转录定量PCR(RT-QPCR)和定量甲基化特异性PCR(QMSP),在TNBC细胞系MDA-MB-231和正常乳腺上皮细胞系MCF-10A中验证了关键基因的表达水平和DNA甲基化模式。结果:通过转录组分析积分分析确定了98个上调和87个下调基因。通过融合甲基化数据,我们进一步鉴定了22种具有高甲基化表达(甲基甲基甲基化)和32个基因,而高甲基化表达较低(高甲基化)。Kaplan-Meier生存分析表明,KIF11,CCNB1和PLK1与TNBC中较高的危险比(HR> 1,p <0.05)相关。低位级主要参与核分裂,细胞器裂变,纺锤体形成,染色体和动孔发育以及蛋白质结合。KEGG途径分析表明,这些基因富含孕酮介导的卵母细胞成熟,细胞周期调节和卵母细胞减数分裂。超高与细胞增殖,激素反应,疼痛,细胞外基质组成以及与硫化合物,肝素和糖胺聚糖的结合有关。PPI网络分析确定了七个中心基因-EXO1,KIF11,FOXM1,CENPF,CCNB1,PLK1和KIF23 - 它们在TNBC组织中都显着过表达并彼此正相关(p <0.05)。接收器的工作特性曲线分析表明,曲线下的面积(AUC)的所有七个基因都超过0.9(p <0.05),表明诊断潜力很强。体外验证实验表明,与MCF-10A细胞相比,MDA-MB-231细胞表现出较高的KIF11,CCNB1和PLK1的mRNA表达水平,而其DNA甲基化水平较低。结论:这项研究确定了七个少量级,包括EXO1,KIF11,FOXM1,CENPF,CCNB1,PLK1和KIF23,它们参与了细胞周期和有丝分裂过程的调节,并且具有TNBC的诊断生物标志物的重要性。值得注意的是,KIF11,CCNB1和PLK1的表达升高与TNBC患者的预后不良有关。这些发现有助于提高对表观遗传学分子机制的理解
