传播模型和大型语言模型的最新进展为新一代强大且易于使用的工具奠定了基础,其中一些最公开可见的应用程序用于艺术创作。然而,这些工具几乎没有为深入了解人工智能系统提供空间,而公众对它们日益增长的兴趣可能会掩盖长期从事其他形式人工智能工作的充满活力的艺术家群体的注意力。我们探索人工智能艺术(特别是以人工智能为工具和主题的作品)促进公众人工智能素养的潜力,并考虑在当前生成人工智能热潮之前开发的策略如何在今天继续发挥作用。我们研究了批判性人工智能艺术家的策略,以支持公众对人工智能的理解并提高非专家的可读性。本文还探讨了艺术家与人工智能研究人员和设计师之间的合作如何阐明与人工智能发展相关的关键技术和社会问题。这项研究包括三位从事人工智能工作的专业艺术家和一组跨学科的学术参与者之间的研讨会。本文报告了这些研讨会,并介绍了艺术家表达的意图和策略,以及与公共人工智能素养研究界相关的见解。我们发现,批判性人工智能艺术可以将底层技术系统与权力的结构性问题联系起来,并促进情境化和具体化的体验式学习,重视解读而不是解释。研究结果还证明了围绕艺术、伦理和人工智能技术的政治经济学进行跨学科对话的重要性,以及这些对话如何融入人工智能设计过程。
目的:这项研究的目的是比较两种剂量计算算法 - 动物分析算法(AAA)(AAA)和Acuros XB(AXB) - 在立体术中使用Halcyon和TrueBeam辐射疗法的肺癌的组合(sbrt)在立体定向性身体放射治疗(SBRT)中的剂量差异(AXB)。材料和方法:一项回顾性研究,招募了20例在澳门Kiang Wu医院接受SBRT治疗的上叶或中叶的周围定位原发性肺癌或肺转移患者。CT图像被进口到Varian Eclipse治疗计划系统(TPS)版本17.01,用于使用RT设备中的AAA和AXB重新计划。根据放射疗法肿瘤学组(RTOG)-0813和RTOG-0915方案评估了有风险的计划质量和处于危险中的器官(OARS)标准。此外,还记录了监视器单元(MU),光束(BOT)和剂量计算时间,以评估治疗计划和交付效率。用p值<0.05确定统计显着性。结果:AAA提供了比AXB更好的合格性,异质性和R50%(0.91 vs 0.89,0.075 vs 0.096,1.05 vs1.07,p <0.05)。计算算法和RT设备都提供了与桨相比的剂量。值得注意的是,与Halcyon相比,TrueBeam需要更少的MUS(分别为65.1 vs 58.7,P <0.05)才能提供相同的剂量,而基于GPU的AXB的TrueBeam在减少剂量计算时间(P <0.001)方面具有优势。基于GPU的AXB的TrueBeam在RT治疗计划和交付方面非常有效。结论:剂量计算算法和RT设备在SBRT肺癌治疗中均有效,在目标覆盖率上具有很高的精度,而与OAR相当。
短短四年间,“阿拉伯之春”已演变为地区权力斗争。地区格局在很短的时间内发生了三次变化,而不是一次两次。第一次冲击发生在2011年,当时四个执政十年的政权被推翻;第二次冲击使伊斯兰主义成为一股政治力量,首先发生在突尼斯,随后发生在埃及和利比亚;第三次冲击是埃及总统穆罕默德·穆尔西下台、突尼斯达成权力分享协议以及巴沙尔·阿萨德在叙利亚的持续存在,修正主义势力卷土重来。随着国内层面的每一波变革,阿拉伯之春对地区的影响越来越明显,到2014年,其在军事和外交方面的影响已经显而易见。阿拉伯国家体系在军事上更加大胆,在外交上更加雄心勃勃,对外界影响的接受度更低,目前正在经历独立以来从未有过的重组。一些以前强大的地区参与者(如伊拉克、叙利亚和埃及)的崩溃让位于其他参与者——所有这些参与者现在都位于海湾地区。因此,在地区关系方面,阿拉伯世界已进入海湾时刻,并且很可能暂时保持这种状态。阿拉伯之春动摇了一个基本上陈旧的体系,因为它改变了曾经在体系中发挥关键作用的国家的领导层,并在没有真正实现政权更迭的情况下使其他国家在地区层面陷入瘫痪。利比亚、叙利亚和埃及传统上自称是阿拉伯政治的推动者,但现在它们成了地区关系的对象而非主体(就像 1991 年以来的伊拉克一样)。它们的衰落赋予了那些没有发生破坏性抗议的国家权力,因此它们仍然能够对地区变化作出反应,而且能够塑造这些变化——主要位于海湾地区。
在肝细胞癌治疗中,索拉非尼、奥沙利铂、5-氟尿嘧啶、卡培他滨、仑伐替尼、多纳非尼为一线药物,瑞戈非尼、阿帕替尼、卡博替尼为二线药物,羟可酮、吗啡、芬太尼为常用的止痛药。但这些药物的疗效和毒性在个体间和个体内存在高度差异,仍是一个亟待解决的问题。治疗药物监测(TDM)是评估药物安全性和疗效最可靠的技术手段。因此,我们开发了一种超高效液相色谱-串联质谱 (UPLC - MS/MS) 方法,用于同时对三种化疗药物 (5-氟尿嘧啶、奥沙利铂和卡培他滨)、六种靶向药物 (索拉非尼、多纳非尼、阿帕替尼、卡博替尼、瑞戈非尼和仑伐替尼) 和三种止痛药 (吗啡、芬太尼和羟可酮) 进行 TDM。我们通过磁性固相萃取 (mSPE) 从血浆样品中提取了 12 种分析物和同位素内标 (IS),并使用 ZORBAX Eclipse Plus C18 色谱柱以含 0.1% 甲酸的水和含 0.1% 甲酸的甲醇作为流动相进行分离。我们的方法的分析性能在灵敏度、线性、特异性、残留、精密度、定量限、基质效应、准确度、稀释完整性、萃取回收率、稳定性以及不同条件下所有分析物的串扰方面均符合中国药典和美国食品药品监督管理局指导原则规定的所有标准。索拉非尼、多纳非尼、阿帕替尼、卡博替尼、瑞戈非尼和仑伐替尼的响应函数估计为 10.0 – 10 000.0 ng/mL,5-氟尿嘧啶、奥沙利铂、卡培他滨、吗啡、芬太尼和羟可酮的响应函数估计为 20.0 – 20 000.0 ng/mL,所有化合物的相关性 > 0.9956。所有分析物的精密度和准确度分别<7.21%和5.62%。我们的研究为临床TDM和药代动力学的简单、可靠、特定和合适的技术提供了实证支持。
本文介绍了一种用于太空太阳能电池的温度加速寿命试验 (ALT)。该试验在黑暗条件下进行,以避免照明 ALT 固有的问题。该 ALT 是我们之前在黑暗条件下仅使用正向偏置的 ALT 的演变。现在,通过正向/反向偏置模拟太阳能电池的工作条件。正向偏置模拟照明下的电气性能,而反向偏置模拟日食期间或任何其他阴影事件(例如天线也可能投射阴影)的阴影。正向与反向时间比为 4:1。此外,当前 ALT 中使用的高温(190、210 和 230 ◦ C)可大大缩短测试时间。此次 ALT 在商用 GaInP/Ga(In)As/Ge 三结太阳能电池上获得的结果表明,退化模式与并联电阻的降低有关,即 GaInP 顶部子电池中发生分流引起的初始退化,随后 Ga(In)As 中间子电池中的并联电阻降低。当前 ALT 中的活化能 (1.06 eV) 高于之前的活化能 (0.88 eV)。反向偏置会促进与正向偏置类似的退化,但更强烈,即在更短的时间内。因此,反向偏置产生的可靠性明显低于之前没有反向偏置的 ALT。尽管可靠性有所降低,但在标称温度 80 ◦ C(许多 GEO 任务的典型温度)下,90% 可靠性的时间为 32 年连续运行。因此,这些太阳能电池似乎非常坚固,并且对于许多太空应用具有很高的可靠性。应该注意的是,这些数字仅与高温引起的退化有关,这里不考虑辐射等其他压力源。
摘要 — 快速可靠的优化轨道转移计算方法对于初始阶段的项目至关重要。它们可以对推进子系统(卫星设计的主要组件之一)进行初步的、现实的规模估算。这篇论文由 ReOrbit Oy 完成,提出了一种最短时间的最优轨道,用于将微型卫星从 GTO 轨道提升到 GEO,假设通过电力推进连续发射。根据此模拟得出的 ∆ v 要求,选择合适的电力推进系统,并详细说明其配置在燃料和推力要求方面的设计。这是通过考虑轨道提升带来的主要贡献,以及 10 年寿命期间每天进行两次的轨道机动所产生的附加物,如位置保持修正和反作用轮去饱和。优化方法是低推力轨道机动的直接-间接混合方法,采用庞特里亚金最小原理将其转录为非线性规划问题。利用 Lyapunov 控制理论获得启动优化器所需的初始猜测。实施轨道平均技术,能够在优化过程中快速计算多条轨迹。动态模型包括 J 2 纬向谐波、太阳辐射压力、太阳和月亮的第三体效应以及高达 1500 公里的大气阻力等干扰。利用圆柱形阴影模型评估日食条件,因为在地球阴影中,太阳能电力推进会经历零推力期。电力推进系统配置是通过权衡研究和不同供应商之间的比较来确定的。选定的方案包括 4 个氙气推进器,配备互补的电源处理单元和推进剂管理系统,总转移时间不到 4 个月。通过在 GEO 中改变推进器的配置,转移轨迹和在轨机动都使用相同的推进系统。
教学大纲 第一单元:通信卫星:轨道和描述:卫星通信简史、卫星频段、卫星系统、应用、轨道周期和速度、轨道倾角的影响、方位角和仰角、覆盖范围和斜距、日食、轨道摄动、卫星在地球静止轨道上的位置。 第二单元:卫星子系统:高度和轨道控制系统、TT&C 子系统、高度控制子系统、电源系统、通信子系统、卫星天线设备。 卫星链路:基本传输理论、系统噪声温度和 G/T 比、基本链路分析、干扰分析、指定 C/N 的卫星链路设计(有和没有频率重用)、链路预算。第三单元:传播效应:介绍、大气吸收、云衰减、对流层和电离层闪烁和低角度衰落、雨致衰减、雨致交叉极化干扰。多址:频分多址 (FDMA)、互调、C/N 计算。时分多址 (TDMA)、帧结构、突发结构、卫星交换 TDMA 机载处理、需求分配多址 (DAMA) – 需求分配类型、特性、CDMA 扩频传输和接收第四单元:地面站技术:发射机、接收机、天线、跟踪系统、地面接口、功率测试方法、低轨道考虑。卫星导航和全球定位系统:无线电和卫星导航、GPS 定位原理、GPS 接收机、GPS C/A 码精度、差分 GPS。 UNIT-V:卫星分组通信:通过 FDMA 传输消息:M/G/1 队列、通过 TDMA 传输消息、纯 ALOHA-卫星分组交换、时隙 Aloha、分组预留、树算法。教科书:
摘要:本文的目的是开发一种确定药剂师本地可用片剂对乙酰氨基酚的方法。我们使用了1220 II II LC Agilent Technologies的II LC系统,该技术由带有DeGasser,可变波长检测器的梯度泵组成,Eclipse Plus C-18 RP列的尺寸为4.6×250mm,5μm。将甲醇 - 水的混合物(30:70 v/v)用作流速为1.0 ml min -1的流动相。在流动阶段不使用缓冲液的情况下实现对乙酰氨基酚的分离。将检测器设置为243 nm的范围。该方法在1-50 µg/ml的范围内线性,相关系数为0.9998。发现扑热息痛的平均保留时间为4.48±0.03分钟。扑热息痛的检测极限和定量极限为0.857 µg/ml和2.597 µg/ml。以相对标准偏差百分比表示的日内和日期精确度低于2%。发现剂量形式的扑热息痛的平均回收率在96.0-102.4%的范围内。该方法可用于验证含有无缓冲液的对乙酰氨基酚的片剂剂型。提出的药物定量方法是经济,准确且快速引入的 - 对乙酰氨基酚也称为扑热息痛,它是PK A 9.38的P-氨基酚衍生物。它被用作镇痛药和抗热药。它用作止痛药和减少发烧,通常可作为片剂剂型。它是全球最常用的药物。,到2021年,他们在印度的Covid Wave期间触及了924千万卢比。2020年3月14日,法国的卫生部长奥利弗·韦兰(Oliver Veran)发推文说,患有199症状的人避免使用布洛芬并使用扑热息痛,导致对扑热息痛药的购买量不成比例。[1]在2019年,对扑热息痛类别的所有品牌的销售额近53亿卢比。DOLO 650毫克成为Covid -19大流行期间品牌最多的平板电脑。由于过量的扑热息痛,还报道了各种副作用。世界卫生组织(WHO)“伪造”(可能是对原始
关于演讲者:克里斯蒂·泰勒(Christy Taylor)是密苏里州圣路易斯拜耳作物科学的计算蛋白设计负责人。Christy以B.S.的Missouri科学技术大学毕业。 化学学位。 Christy获得了NSF奖学金奖学金和Anna Fuller Cancer Research研究奖学金奖学金。研究。 克里斯蒂获得博士学位。在麻省理工学院的生物学博士学位与艾米·基廷博士(Amy Keating)博士一起,她的博士学位论文名为“小蛋白质中的重新设计特异性”。 克里斯蒂(Christy)与加兰德·马歇尔(Garland Marshall)博士在圣路易斯华盛顿大学(Washington University)进行了博士后学习。 在马歇尔博士的实验室中,克里斯蒂专注于GPCR周围的计算化学项目。 Christy被授予NIH国家研究服务奖博士后奖学金,W.M。 凯克分子医学博士后奖学金和NIH国家研究服务奖博士后奖学金奖学金。 希望了解有关计算生物学的更多信息,克里斯蒂(Christy)在华盛顿大学医学院的基因组学院担任了一名员工科学家职位,在那里她对线虫进行了比较的基因组学。 克里斯蒂(Christy)于2012年加入孟山都(Monsanto),在化学部门进行了生物信息学和小分子研究。 在2018年,克里斯蒂(Christy)过渡到生物技术组织的计算蛋白设计团队。 Christy的团队在主要行作物中设计蛋白质,以用于昆虫控制和除草剂耐受性,并设计合成的表达元素并优化蛋白质表达。 她最近也被提升为拜耳高级科学研究员。Christy以B.S.的Missouri科学技术大学毕业。化学学位。 Christy获得了NSF奖学金奖学金和Anna Fuller Cancer Research研究奖学金奖学金。研究。 克里斯蒂获得博士学位。在麻省理工学院的生物学博士学位与艾米·基廷博士(Amy Keating)博士一起,她的博士学位论文名为“小蛋白质中的重新设计特异性”。 克里斯蒂(Christy)与加兰德·马歇尔(Garland Marshall)博士在圣路易斯华盛顿大学(Washington University)进行了博士后学习。 在马歇尔博士的实验室中,克里斯蒂专注于GPCR周围的计算化学项目。 Christy被授予NIH国家研究服务奖博士后奖学金,W.M。 凯克分子医学博士后奖学金和NIH国家研究服务奖博士后奖学金奖学金。 希望了解有关计算生物学的更多信息,克里斯蒂(Christy)在华盛顿大学医学院的基因组学院担任了一名员工科学家职位,在那里她对线虫进行了比较的基因组学。 克里斯蒂(Christy)于2012年加入孟山都(Monsanto),在化学部门进行了生物信息学和小分子研究。 在2018年,克里斯蒂(Christy)过渡到生物技术组织的计算蛋白设计团队。 Christy的团队在主要行作物中设计蛋白质,以用于昆虫控制和除草剂耐受性,并设计合成的表达元素并优化蛋白质表达。 她最近也被提升为拜耳高级科学研究员。化学学位。Christy获得了NSF奖学金奖学金和Anna Fuller Cancer Research研究奖学金奖学金。研究。克里斯蒂获得博士学位。在麻省理工学院的生物学博士学位与艾米·基廷博士(Amy Keating)博士一起,她的博士学位论文名为“小蛋白质中的重新设计特异性”。克里斯蒂(Christy)与加兰德·马歇尔(Garland Marshall)博士在圣路易斯华盛顿大学(Washington University)进行了博士后学习。在马歇尔博士的实验室中,克里斯蒂专注于GPCR周围的计算化学项目。Christy被授予NIH国家研究服务奖博士后奖学金,W.M。 凯克分子医学博士后奖学金和NIH国家研究服务奖博士后奖学金奖学金。 希望了解有关计算生物学的更多信息,克里斯蒂(Christy)在华盛顿大学医学院的基因组学院担任了一名员工科学家职位,在那里她对线虫进行了比较的基因组学。 克里斯蒂(Christy)于2012年加入孟山都(Monsanto),在化学部门进行了生物信息学和小分子研究。 在2018年,克里斯蒂(Christy)过渡到生物技术组织的计算蛋白设计团队。 Christy的团队在主要行作物中设计蛋白质,以用于昆虫控制和除草剂耐受性,并设计合成的表达元素并优化蛋白质表达。 她最近也被提升为拜耳高级科学研究员。Christy被授予NIH国家研究服务奖博士后奖学金,W.M。凯克分子医学博士后奖学金和NIH国家研究服务奖博士后奖学金奖学金。希望了解有关计算生物学的更多信息,克里斯蒂(Christy)在华盛顿大学医学院的基因组学院担任了一名员工科学家职位,在那里她对线虫进行了比较的基因组学。克里斯蒂(Christy)于2012年加入孟山都(Monsanto),在化学部门进行了生物信息学和小分子研究。在2018年,克里斯蒂(Christy)过渡到生物技术组织的计算蛋白设计团队。Christy的团队在主要行作物中设计蛋白质,以用于昆虫控制和除草剂耐受性,并设计合成的表达元素并优化蛋白质表达。她最近也被提升为拜耳高级科学研究员。克里斯蒂(Christy)拥有19个出版物和6份专利,并拥有生物信息学,计算化学,蛋白质设计,农业化学和昆虫控制的领域。在孟山都和拜耳,她获得了多个奖项,包括拜耳埃利普斯奖,拜耳生活科学合作竞赛冠军,拜耳影响力奖,孟山都冰(Inspire,Inspire,沟通,执行)奖和2023名杰出女性数据科学奖。
摘要 — 数字调查人员通常很难在数字信息中发现证据。很难确定哪个证据来源与特定调查有关。人们越来越担心的是,数字调查中使用的各种流程、技术和具体程序没有跟上犯罪的发展。因此,犯罪分子利用这些弱点进一步犯罪。在数字取证调查中,人工智能 (AI) 在识别犯罪方面具有不可估量的价值。据观察,基于人工智能的算法在检测风险、预防犯罪活动和预测非法活动方面非常有效。提供客观数据和进行评估是数字取证和数字调查的目标,这将有助于开发一个可以作为法庭证据的合理理论。研究人员和其他当局已经使用现有数据作为法庭证据来定罪一个人。本研究论文旨在使用特定的智能软件代理 (ISA) 开发用于数字调查的多代理框架。代理进行通信以共同解决特定任务,并在每项任务中牢记相同的目标。每个代理中包含的规则和知识取决于调查类型。使用基于案例的推理 (CBR) 技术可以快速有效地对刑事调查进行分类。所提出的框架开发是使用 Java 代理开发框架、Eclipse、Postgres 存储库和代理推理规则引擎实现的。所提出的框架使用 Lone Wolf 图像文件和数据集进行了测试。实验是使用各种 ISA 和 VM 集进行的。哈希集代理的执行时间显著减少。加载代理的结果是浪费了 5% 的时间,因为文件路径代理规定删除 1,510,而时间线代理发现了多个可执行文件。相比之下,使用数字取证工具包对 Lone Wolf 图像文件进行的完整性检查大约需要 48 分钟(2,880 毫秒),而 MADIK 框架在 16 分钟(960 毫秒)内完成了此操作。该框架与 Python 集成,允许进一步集成其他数字取证工具,例如 AccessData Forensic Toolkit (FTK)、Wireshark、Volatility 和 Scapy。