金属探测器广泛用于探测战争遗留爆炸物,如地雷和未爆炸弹药。几乎所有专业探测器都基于涡流原理。目前误报数量高达总警报数量的 99.9%。因此,排雷界非常需要专业地雷探测器增加鉴别能力。我们展示了两种互补的方法:使用垂直信号轮廓和水平空间图。这是通过在搜索头上添加垂直距离传感器和惯性定位单元来实现的。图像处理方法可用于区分金属压载物和危险物体。在本文中,我们展示了用于涡流成像的完全自主 3-D 定位单元开发的第一步。关键词:金属探测、地雷探测器、鉴别、信号高度分布、涡流
摘要:我们研究了自1980年以来子午大气热传输(AHT)的线性趋势,在大气重新分析数据集,耦合气候模型和仅被大气中的气候模型与历史悠久的海面性温度强迫的唯一气候模型。AHT的趋势分解为循环的三个组成部分的贡献:(i)瞬态涡流,(ii)固定涡流和(iii)平均子午循环。所有重新分析和模型都同意南大洋的AHT趋势模式,从而确立了该地区的趋势。在Reanalyses的南大洋中,瞬态eDdy Aht幅度有强大的增加,仅大气模型就可以很好地复制,而耦合模型显示出较小的幅度趋势。这表明海面温度趋势的模式有助于该区域的偏差AHT趋势。在热带地区,我们发现模型中平均循环AHT趋势之间的巨大差异和重新分析,我们将其连接到热带降水趋势中的差异。在北半球中,我们发现大规模趋势和更多不确定性的证据较少,但请注意,模型与重新分析的几个区域与具有动态解释的重新分析。在整个工作中,我们在AHT的不同组成部分之间获得了强大的补偿,最值得注意的是,在南大洋中,瞬态eDdy AHT趋势得到了平均体系循环AHT趋势的很好的补偿,从而导致了相对较小的AHT趋势。这重点介绍了考虑AHT的重要性,而不是单独的每个AHT组件。
萨克拉门托谷的主要年度和夏季风型是全海风,通常称为三角洲风。这些凉风源自太平洋,流经海岸山脉的海平面间隙,即卡奎内兹海峡。在冬季(十二月至二月),北风占主导地位。萨克拉门托谷的风向受每个季节的主要风向模式影响。然而,在七月到九月的大约一半时间里,一种称为“舒尔茨涡流”的现象,即卡奎内兹海峡北侧的大型各向同性垂直轴涡流,阻止三角洲风将污染物向北输送出萨克拉门托谷,并导致风型向南绕回,这往往会将空气污染物留在萨克拉门托谷。这种现象的影响加剧了污染水平,并增加了该地区违反州和/或联邦空气质量标准的可能性。
Rosemery Sosa-Gutierrez等人对手稿的萨尔加萨姆积累和运输的综述。(Egusphere-2025-514.pdf)ClémentVIC(法国Plouzané,Lops,Plouzané)审查于2025年3月4日。作者研究了萨尔加斯(Sargassum)如何被困在热带大西洋的中尺度涡流中。,他们以复合方法的形式将基于卫星的高度测定和卫星衍生的分数覆盖物结合使用。他们发现中尺度的旋风涡流(CES)平均比中尺度反气旋涡流(AES)多15%,这与报告这种不对称性的文献一致。有趣的是,不对称似乎沿涡流生长。该方法很健壮,尽管迅速讨论了结果,但结果清楚地暴露了。我建议海洋科学出版的手稿。我只有几个小评论,我希望可以帮助澄清一些要点。没有任何评论从根本上质疑方法或结果。小评论
随着数字服务越来越多地部署和用于各种领域,信息和通信技术 (ICT) 对环境的影响令人担忧。人工智能正在推动这一增长,但其环境成本仍未得到深入研究。大型生成模型(如 ChatGPT)的最新趋势尤其引人注目,因为它们的训练需要大量使用专门的计算资源。这些模型的推理以服务的形式在网络上提供,使用它们还可以调动最终用户终端、网络和数据中心。因此,这些服务加剧了全球变暖,加剧了金属短缺,增加了能源消耗。这项工作提出了一种基于 LCA 的方法,用于对生成 AI 服务的环境影响进行多标准评估,考虑了训练模型、从模型中推断和在线托管模型所需的所有资源的具体成本和使用成本。我们以稳定扩散服务为例来说明我们的方法,这是一种可在线访问的开源文本到图像生成深度学习模型。此用例基于对稳定扩散训练和推理能耗的实验观察。通过敏感性分析,探索了估计使用强度对影响源影响的各种场景。
在11位独立的非执行董事中,有7个任期超过9年。Graham Davin领导了监督委员会的讨论,以评估Michael Lewis,Fatima Abrahams教授,Nomahlubi Simamane教授,Eddy Ollowitz,Ronnie Stein,Boitumelo Makgabo-Fiskersstrand和David Friedland(在相关的董事中会与审议的董事审理)。主管委员会依次参考其行为和绩效并参考国王IV指标,讨论并评估了每个受影响的董事。也考虑了影响董事的年度独立问卷以及先前披露的任何利益冲突。在适当考虑后,监督委员会得出结论,与该小组的联系的长度不会损害其独立性。
朱迪思1*,罗杰A.H.在Antonis Assimils 21,Michael Bader 15,Tom Beckers 18,Eisel 6,YPE Elgersma 3,Bernhard Englitz 2,Antonio Fernandez-Red 32,Carlos P. Henckens 1,基督教Herden 12,Roelof A. Hut 6,Wendy Jarrett 20,Catherine 36,Martien J. J. Kiliaan 1,Sharon M. Kolk 2,Aniko Chorusi 5,St。 Luthi 27,Liya My 2,Anne S Malli 17,Peter Meerlo 6,Jorge F. Mejias 35,Frank J. Meye 7,Anne S Mismill 22, Pasquet 23,Cyriel M A Pennartz 5 5,Popik Popic 25,Jos Princes 10,Pride 24许可M,Sidarta Ribeir 29,Blessed Rozendal 1,Janine I. ,8月B. Smit 4,L.M.J. Wolvekamp Monique 2,Eddy A.到Zee 6,Lisa GenzelEisel 6,YPE Elgersma 3,Bernhard Englitz 2,Antonio Fernandez-Red 32,Carlos P.Henckens 1,基督教Herden 12,Roelof A. Hut 6,Wendy Jarrett 20,Catherine 36,Martien J. J. Kiliaan 1,Sharon M. Kolk 2,Aniko Chorusi 5,St。 Luthi 27,Liya My 2,Anne S Malli 17,Peter Meerlo 6,Jorge F. Mejias 35,Frank J. Meye 7,Anne S Mismill 22, Pasquet 23,Cyriel M A Pennartz 5 5,Popik Popic 25,Jos Princes 10,Pride 24许可M,Sidarta Ribeir 29,Blessed Rozendal 1,Janine I. ,8月B. Smit 4,L.M.J.Wolvekamp Monique 2,Eddy A.到Zee 6,Lisa Genzel
中尺度涡流会由于其固有特征而影响海洋中物质的分布,从而影响当地的生态系统。然而,以前几乎没有关于大旋转(GW)对颗粒有机碳(POC)分布的影响的研究。这项研究分析了GW对索马里沿岸印度洋西北部海洋POC浓度的三维分布的影响。表明,在GW的表面和地下海洋中,POC的空间分布模式存在显着差异。在海面,GW边缘的POC浓度高于GW的捕获和运输效果所产生的涡流中心。差异约为中心和边缘之间的20 mg·m -3。在地下层(大约在50至175 m之间),涡流中的POC浓度很高,而周围水中的POC浓度很低。中心和边缘之间的最大差异约为10 mg·m -3。这些现象表明,GW将对海洋中的POC分布产生影响,这反过来可能会影响当地海洋中的碳循环进展。
增材制造技术提供了在局部层面创建和修改材料成分和结构的各种可能性,但往往容易出现不良缺陷和不均匀性。本贡献利用这些缺陷在金属中生成材料固有的隐藏代码和水印,用于认证和防伪应用。通过受控和随机的工艺变化,使用激光粉末床熔合 (L-PBF) 和激光定向能量沉积 (L-DED) 工艺产生了可以通过涡流设备读取和认证的唯一代码。提出了两种方法:首先,使用 L-PBF 制造具有确定形状的体积多孔结构。其次,通过交替工艺参数的 L-DED 制造涂层,导致磁导率的局部偏差。这种非确定性编码方法产生了一种独特的材料结构,可在涡流测量中触发高信号幅度。由于熔池动力学不可复制,伪造变得不可能。统计假设检验证明,该系统能够以 5 亿分之一的确定性防止错误接受或拒绝代码。一种新型锁定系统的低成本设置表明,可以在一秒钟内可靠地感知代码。