您是否想知道将肥料涂在土壤上后发生了什么?将动物粪便应用于花园或蔬菜地块,从而增加了土壤动物群的丰富度,尤其是细菌,真菌和earth。因此,土壤呼吸和养分矿化增加。养分矿化是通过土壤微生物(例如死动植物)等有机材料的分解,它们将这些材料转化为可用的植物无机形式。您可能听说过,一茶匙土壤中的生物数量可能超过90亿。尽管土壤微生物仅占土壤体积的一小部分,但它们起着非常重要的作用。有机修正案(例如动物粪便)在农业土壤中的应用是传统园艺的替代实践,可改善土壤质量,提供养分和碳,促进微生物的多样性和活动,并改善土壤结构。
简单的摘要:近年来,人们对甲虫,板球和苍蝇等大规模饲养的可食用昆虫的兴趣大大增加。这些昆虫现在用于各种目的:作为食物和饲料,管理有机和塑料废物,排毒环境,生产生物燃料,甚至用于化妆品和药品。这些应用包括未广泛使用的废料喂养昆虫,将其转变为有价值的产品,例如食物,饲料和肥料。因此,昆虫的消化系统是这些发展过程的基石。消化部分由昆虫本身进行,部分是由肠道相关的微生物进行的。他们各自的角色仍然是一个需要的研究领域,现在很明显,微生物社区可以适应,增强和扩展昆虫消化和排毒其饲料的能力。尽管如此,这些物种还是令人惊讶的自主性,并且与消化所需的微生物没有强制性关联。相反,微生物群在同一物种方面有很大不同,并且主要由宿主的环境和饮食形成。这种自然的灵活性提供了靶向和发展昆虫和微生物之间新型关联的前景,以创建量身定制的质量菌株,以管理特定的副产品和工业应用。
从生物体产生的抽象二级代谢产物是与生物的生长直接相关的化合物,而是对它们在自然界中的许多重要目的。萜烯和萜类化合物形成由萜烯合酶(TPS)酶产生的二级代谢产物的一部分。真菌物种高度依赖于二级代谢产物,尤其是萜类化合物,用于许多适应性任务,例如防御和共生关系的形成。与植物物种相比,萜烯和萜类化合物在真菌和大量真菌物种中的重要性,但真菌基因组中相应的TPS基因的研究要比植物中的研究要小得多。在这项工作中,作为UCPH大型研究的一部分,研究了未开发的可食用真菌物种的TPS,以促进酶的特征和产品探索。31 TPSs enzymes from fungal genomes of shiitake mushroom Lentinula edodes, oyster mushroom Pleurotus ostreatus , porcini mushroom Boletus edulis , jelly fungus Auricularia subglabra and cheese fungi Penicillium roqueforti , Penicillium biforme , and Penicillium camemberti were expressed.使用尿嘧啶特异性切除试剂(用户)克隆技术在酵母中通过多拷贝质粒引入基因,将质粒与诱导型GAL1启动子一起构建质粒。使用气相色谱质谱法(GC-MS),用顶空固相微挖掘(HS-SPME)在体内分析产物。从结果可以得出的结论是,三个TPS主要产生单萜,九个TPSS,主要是倍半萜烯和一个TPS主要是二萜。检测到一个没有提供名称的假定倍半萜,以及在真菌物种中找不到的曲线素烯和sinularene和myltayl-4(12)烯。单二烯合酶(Mono-TPSS)属于大多数的Ascomycota Phylum和倍半甲氧苄酯合酶(sesqui-TPSS),而大多数人都属于BASIDIOMYCOTA PHYLUM。TPS基因的催化活性被追溯到系统发育树,尤其是在一个簇中产生单萜的TPSS,在另一个群集中产生sesquiterpenes,在另一个群集中产生倍苯二甲酸酯。另外的实验ERG20P(N127W)的表达是一种被描述为在酵母细胞中累积GPP的基因,导致倍半萜烯的意外增加。此外,将三分之一的转化体诱导到缓冲培养基(pH 6.5)中,以分析pH和酶活性之间的相关性。缓冲诱导导致除三个仍未显示未萜烯峰的经过测试的非活性转化体外,所有倍半萜的产生。
植物基因组学领域取得了重大进展,高通量方法的使用越来越多,可以表征多个基因组范围内的分子表型。这些发现为植物性状及其潜在的遗传机制提供了宝贵的见解,特别是在模型植物物种中。尽管如此,有效地利用它们进行准确的预测是作物基因组改良的关键一步。我们提出了 AgroNT,这是一个基础性的大型语言模型,它以 48 种植物物种的基因组为训练基础,主要关注作物物种。我们表明,AgroNT 可以获得对调控注释、启动子/终止子强度、组织特异性基因表达的最新预测,并优先考虑功能性变异。我们对木薯进行了大规模的计算机饱和诱变分析,以评估超过 1000 万个突变的调控影响,并提供它们的预测效果作为变异表征的资源。最后,我们建议将此处汇编的各种数据集用作植物基因组基准 (PGB),为植物基因组研究中基于深度学习的方法提供全面的基准。预先训练的 AgroNT 模型可在 HuggingFace 上公开获取,网址为 https://huggingface.co/InstaDeepAI/agro-nucleo-transformer-1b,以供未来研究使用。
食用花卉在世界各地有着丰富的消费和文献记录,横跨希腊、罗马、中世纪欧洲等古代文明以及中国和日本等亚洲国家 [1,2]。随着时间的推移,全球化和消费者意识的增强重新点燃了人们对食用花卉的兴趣,因为它们具有增进人类福祉和健康的潜力。研究重点关注其生物活性化合物,包括天然色素、精油和抗氧化剂,阐明其促进健康的功效和民间药用用途。食用花卉中常见的植物化学物质如表 1 所示。为了满足消费者对天然、功能性和健康食品的偏好,食用花卉在市场上获得了相当大的吸引力,导致人们对菊花、木槿、薰衣草、万寿菊和玫瑰等几种花卉的潜在益处进行了评估 [13,14]。大约有 180 种花卉被认定适合人类食用,可食用花卉不仅具有美感,而且是一种安全又有营养的选择。这些花朵除了香气之外,还作为食品中的功能性成分发挥着至关重要的作用,当加入各种菜肴和饮料(如茶、葡萄酒、果汁等)中时,还具有潜在的健康优势。[15,2]。除了烹饪吸引力之外,它们在传统医学中的广泛历史用途凸显了它们的药用价值。
丝状真菌在向更可持续的食品系统过渡过程中至关重要。虽然对这些生物进行基因改造有望提高真菌食品的营养价值、感官吸引力和可扩展性,但是缺乏用于食用菌株生物工程食品生产的基因工具和实际用例。在这里,我们为米曲霉开发了一个模块化合成生物学工具包,米曲霉是一种用于发酵食品、蛋白质生产和肉类替代品的食用真菌。我们的工具包包括用于基因整合的 CRISPR-Cas9 方法、中性位点和可调启动子。我们使用这些工具来提高食用生物质中营养麦角硫因和风味及颜色分子血红素的细胞内水平。过量生产血红素的菌株呈红色,只需极少的加工即可轻松制成仿肉饼。这些发现凸显了合成生物学在增强真菌食品方面的前景,并为食品生产及其他领域的应用提供有用的遗传工具。
摘要:一种称为疫苗的生物制剂可为特定的感染或恶性疾病提供主动获得的免疫力。有多种疫苗品种,例如:灭活疫苗。实时侵入的免疫接种。mRNA(Messenger RNA)疫苗。疫苗接种包括亚基,重组,多糖和缀合物。具有特定疾病抗原的基因工程作物称为食用疫苗。由于疫苗的文化简单性,这降低了产品成本。由于它们不需要增强易感反应的辅助因素,因此可食用的疫苗是一种可行的免疫输送方法。在空置,存储,药物,产品和运输方面,食用疫苗也很经济。此类操作下的食物包括土豆,香蕉,生菜,大豆,大米,生菜,苹果,豌豆,豆豆,豆豆,樱桃番茄,苜蓿,西红柿,胡萝卜等。本综述着重于多年来可食用疫苗的开发以及随着技术的不断发展,其所拥有的各种监视。疫苗的演变导致发现了有效的新形式的疫苗接种形式,并涵盖了广泛的疾病。关键字:可食用疫苗,疾病,粘膜免疫系统。简介:疫苗是一种天然药物,旨在通过刺激抗体的产物来对投诉产生不罚。可被疫苗的疫苗用几种不可或缺的名称称为类似的食物疫苗,口服疫苗,亚基疫苗和绿色疫苗。每次具有传染性状况的人数超过一百万人死亡。他们觉得是一种可行的意志,尤其是对于穷人和发展中国家。最早开发的疫苗是爱德华·詹纳(Edward Jenner)在1796年由小咒语疫苗,随后是路易斯·帕斯特(Louis Pasteur)[1]继续进行的工作。共同的疫苗乘积包括四种主要方式,包括传播,绝缘,成圣和表达。感染哺乳动物宿主粘膜膜的病原体占这些疾病的50%[2]。疫苗的类型:
摘要:通过减少二氧化碳纤维细纹来降低温室效应的必要性,指示食品包装技术使用生物基材料。藻酸盐是源自棕色藻类物种的,是开发能够保护食物免受氧化/细菌变质的可食用活性涂层的最有希望的生物聚合物之一。在这项研究中,藻酸钠用甘油塑化并与生物基的百里香醇/天然霍洛伊石纳米杂交混合,用于开发新型的可食用活性涂层。纳米复合材料也是通过将纯喇叭岩与藻酸钠/甘油基质混合并出于比较原因将其用作参考材料的。仪器分析表明,与纯藻酸钠/甘油基质相比,百里香/hoy虫纳米杂化与藻酸钠/甘油基质相比具有更高的兼容性。提高兼容性导致拉伸特性,水/氧屏障特性和总抗氧化活性。与未涂层的奶酪相比,这些可食用的活性涂层被应用于传统的希腊奶酪,并在一个log10单元(CFU/g)上显示中介微生物种群的减少。此外,随着梭子石和百里醇含量的增加,中嗜微生物种群的减少增加,表明这种藻酸钠/甘油/百里香醇/甲醇/hay虫水凝胶是奶牛产物的有希望的可食用的活性涂层。
本研究评估了13个本地南瓜种群的定量和定性性状。该实验是在随机块设计中进行的,具有3个复制(2019年至2020年)。在这项研究中考虑了以下特征:水果的数量,体重,长度,宽度和长度/宽度比,种子产量,种子产量/果实产量比,1000个种子体重,空种子的百分比,种子长度,种子宽度,种子仁/全种子/种子比和种子油百分比。此外,还进行了质量测试,包括使皮肤与内核的易于分离,味道质量以及种子形状和大小的可取性,从消费者的角度来看。方差分析显示大多数研究性状的显着差异。基于特征的平均比较结果,在Ghalami-Kalaleh#1和Mashhady-Azadshahr,然后是Mashhady-Khoy种群中观察到最高的种子产量。从消费者的角度来看,最高的口味质量属于Goushti-Kalaleh人口。结果代表了种子产量和果实之间的正相关和高度显着的相关性。在种子产量和其他相关性状之间未观察到没有显着相关性。建议在选择程序和修改高收益人群时考虑水果数字特征。
