在 COVID-19 大流行期间,必须考虑食用和非食用物品的卫生问题,因为食用受感染的物品可能危害我们的健康。此外,所有东西在食用前都不能煮沸,因为煮沸会破坏水果和必需的矿物质和蛋白质。因此,迫切需要一种可以对食用物品进行消毒的智能设备。杀菌紫外线 C (UVC) 已被证明能够消灭任何物体表面的病毒和病原体。虽然几分钟的 UVC 照射就可以破坏或灭活病毒和病原体,但少量的 UVC 光可能会破坏食用物品的蛋白质,并影响水果和蔬菜。为此,我们提出了一种新颖的设备设计,该设备与人工智能和 UVC 一起使用,可以自动检测食用物品并采取相应措施。这会导致根据所提模型检测到的不同物品,根据其允许的限度,对它们施加有限的 UVC 剂量。此外,该设备采用智能架构,可将 UVC 光均匀分布在食物的整个表面上,从而保护食物的健康和营养。
植物基因组学领域取得了重大进展,高通量方法的使用越来越多,可以表征多个基因组范围内的分子表型。这些发现为植物性状及其潜在的遗传机制提供了宝贵的见解,特别是在模型植物物种中。尽管如此,有效地利用它们进行准确的预测是作物基因组改良的关键一步。我们提出了 AgroNT,这是一个基础性的大型语言模型,它以 48 种植物物种的基因组为训练基础,主要关注作物物种。我们表明,AgroNT 可以获得对调控注释、启动子/终止子强度、组织特异性基因表达的最新预测,并优先考虑功能性变异。我们对木薯进行了大规模的计算机饱和诱变分析,以评估超过 1000 万个突变的调控影响,并提供它们的预测效果作为变异表征的资源。最后,我们建议将此处汇编的各种数据集用作植物基因组基准 (PGB),为植物基因组研究中基于深度学习的方法提供全面的基准。预先训练的 AgroNT 模型可在 HuggingFace 上公开获取,网址为 https://huggingface.co/InstaDeepAI/agro-nucleo-transformer-1b,以供未来研究使用。
Anderson,J。C.(2017)。 对乙酰氨基酚,P-氨基苯酚和P-氨基苯甲酸的生物合成产生。 Behle,A.,Saake,P.,Germann,A。T.,Dienst,D。,&Axmann,I.M。(2020)。 比较剂量 - cy-细菌中诱导启动子的反应分析。 ACS合成生物学,9,843 - 855。 Berliner,A.J.,Hilzinger,J.M.,Abel,A.J.,McNulty,M.,Makrygiorgos,G.,Averesch,N.J.H.,Gupta,S.S.,S.S.,Benvenuti,A.,Caddell,D. Lipsky,I.,Mirkovic,M.,Meraz,J。,…A.P。(2020)。 朝着火星上的生物制造业。 天文学和太空科学的边界,8,1 - 20。 Blue,R。S.,Bayuse,T。M.,Daniels,V。R.,Wotring,V。E.,Suresh,R.,Mulcahy,R。A.,&Antonsen,E。L.(2019)。 为NASA勘探太空飞行提供药房:挑战和当前的不足。 NPJ微重力,5,14。Anderson,J。C.(2017)。对乙酰氨基酚,P-氨基苯酚和P-氨基苯甲酸的生物合成产生。Behle,A.,Saake,P.,Germann,A。T.,Dienst,D。,&Axmann,I.M。(2020)。比较剂量 - cy-细菌中诱导启动子的反应分析。ACS合成生物学,9,843 - 855。Berliner,A.J.,Hilzinger,J.M.,Abel,A.J.,McNulty,M.,Makrygiorgos,G.,Averesch,N.J.H.,Gupta,S.S.,S.S.,Benvenuti,A.,Caddell,D. Lipsky,I.,Mirkovic,M.,Meraz,J。,…A.P。(2020)。朝着火星上的生物制造业。天文学和太空科学的边界,8,1 - 20。Blue,R。S.,Bayuse,T。M.,Daniels,V。R.,Wotring,V。E.,Suresh,R.,Mulcahy,R。A.,&Antonsen,E。L.(2019)。为NASA勘探太空飞行提供药房:挑战和当前的不足。NPJ微重力,5,14。
营养补充剂越来越多地生产并用于动物的营养益处,改善生理功能和增强健康[9,10]。例如,Li等人。[7]发现,用50 g l-citrulline补充Yili马的饮食增加了精氨酸和瓜氨酸的血浆浓度,从而改善了运动性能。可食用的鸟巢[EBN]是Swiftlet物种的唾液分泌物中的一种产品,是中国人中有价值的产品,由于其药物和营养特性,已被消耗了几个世纪,包括抗衰老,抗氧化,抗氧化,抗癌和抗炎[11,12]。EBN富含唾液酸(SA),它是一种具有代谢增强和抗氧化特性的生物成分,对马健康具有积极影响[12]。虽然营养补充剂通常用于增强赛马的健康和性能,但在阿拉伯种族种马中补充(EBN)补充的安全性和功效的研究有限,尤其是在减少运动引起的炎症和支持免疫功能方面。
植物性材料和可食用的纤维已成为传统包装材料的有前途的替代品,提供可持续和环保的解决方案。这种迷你审查强调了源自多糖,蛋白质和脂质的植物基材料的重要性,展示了其可再生和可生物降解的性质。探索了可食用纤维的特性,包括机械强度,屏障特性,光学特性,热稳定性和货架寿命扩展,展示了它们对食物包装和其他应用的适用性。此外,3D打印技术的应用允许定制设计和复杂的几何形状,为个性化营养铺平了道路。功能化策略,例如主动和智能包装,生物活性化合物的掺入以及抗菌特性,还提供了其他功能和好处。挑战和未来的方向是确定的,强调了可持续性,可扩展性,调节和绩效优化的重要性。 突出显示了植物性材料和可食用的材料的潜在影响,从减少对化石燃料的依赖到减轻塑料废物和促进循环经济。 总而言之,植物性材料和可食用的纤维在革新包装行业中具有巨大潜力,为传统材料提供了可持续的替代品。 拥抱这些创新将有助于减少塑料废物,促进循环经济,并创造一个可持续和弹性的星球。挑战和未来的方向是确定的,强调了可持续性,可扩展性,调节和绩效优化的重要性。突出显示了植物性材料和可食用的材料的潜在影响,从减少对化石燃料的依赖到减轻塑料废物和促进循环经济。总而言之,植物性材料和可食用的纤维在革新包装行业中具有巨大潜力,为传统材料提供了可持续的替代品。拥抱这些创新将有助于减少塑料废物,促进循环经济,并创造一个可持续和弹性的星球。
可食用的鸟巢(EBN)是豪华食品之一,由于其营养价值和治疗益处,被广泛用作健康食品。传统的EBN洗涤过程会导致体重和养分含量的减少,并且由于使用过氧化氢而增加了污染物。使用基于角蛋白分解酶的洗涤溶液在洗涤前后,使用一种探索性观察方法来检查Fuciphaga Colocalia fuciphaga的EB质量。EB清洁有四个阶段,即通过自来水,乙醇溶液,室温下的酶溶液和50 o C进行清洁,在40 o C下干燥42小时。使用AOAC方法分析了总共60个EBN(不干净,n = 30)和清洁,n = 30)。使用原子吸收分光光度计(AAS)的Ca,Fe,K和Mg的矿物质含量,除了通过分光光度计测量P。使用碳水化合物估计试剂盒测量糖蛋白含量,并使用HPLC方法确定氨基酸含量。对清洁度的评估是使用半训练的小组成员进行的评分系统进行的。获得的结果表明,干净的EBN颜色略淡黄色,清洁前后EB的清洁度从2.35增加到3.84。清洁EBN蛋白质含量降低了7.2%,而总氨基酸从38.51%降至32.71%。清洁EBN包含八个必需氨基酸,为17.93%,亮氨酸,缬氨酸,精氨酸和苏氨酸含量高(2.42-2.96%)。EBN的干净灰分含量从3.7%增加到7.8%。清洁EBN中的碳水化合物含量和铁分别为39.19±0.76%和14.35 mg/100 g干物质。高水平的碳水化合物和铁似乎是糖蛋白支持健康的良好来源,并有潜力作为贫血患者的铁的替代来源。可以使用基于角蛋白水解酶的梯田,乙醇和洗涤溶液进行逐步洗涤方法,以减轻体重减轻并改善EBN的质量。
这项研究调查了动画食品消费对人类心理学的影响。我们开发了一个可移动的,可食用的机器人,并通过可视化机器人的动作和进食来评估了参与者的印象。尽管已经开发了几种类型的Edible机器人,但据我们所知,与饮食相关的心理影响尚未得到研究。我们使用明胶和糖开发了一种肺炎驱动的可食用机器人。我们检查了它的外观和参与者的印象。在饮食实验中,我们评估了两个条件:一个机器人移动的条件,一个是一个驻扎。我们的结果表明,参与者对移动机器人的看法与施工机器人不同,在食用时会导致不同的看法。此外,当机器人被咬伤并在两个条件下咀嚼时,我们观察到了感知的纹理差异。这些发现为在各种情况(例如医疗领域和烹饪娱乐)中的可食用机器人的实际应用提供了宝贵的见解。
您是否想知道将肥料涂在土壤上后发生了什么?将动物粪便应用于花园或蔬菜地块,从而增加了土壤动物群的丰富度,尤其是细菌,真菌和earth。因此,土壤呼吸和养分矿化增加。养分矿化是通过土壤微生物(例如死动植物)等有机材料的分解,它们将这些材料转化为可用的植物无机形式。您可能听说过,一茶匙土壤中的生物数量可能超过90亿。尽管土壤微生物仅占土壤体积的一小部分,但它们起着非常重要的作用。有机修正案(例如动物粪便)在农业土壤中的应用是传统园艺的替代实践,可改善土壤质量,提供养分和碳,促进微生物的多样性和活动,并改善土壤结构。
水溶液在环境条件下会自我组装成胆汁脂液液晶,当水含量降至45 wt%左右时。[8,23,24]胆固醇相具有周期性的,螺旋纳米结构,由称为螺距P的物理距离定义,P,随着水的含量降低而减小。[17,23]当P处于可见光谱的长度尺度时,入射光以类似于Bragg-Reflection的方式选择性地反映,而HPC中间体显示出生动的金属色素(图1)。[25]观察到的颜色主要取决于所用的HPC类型和溶剂浓度。[9,17,26]但是,通过主动操纵胆固醇螺距,该颜色仍然可以动态控制后的形成。例如,施加宏观压力将压缩胆固醇相,在接触点减少p,并在视觉上导致局部和可逆的蓝调,[17]称为机械化合物。一种机械色素响应,结合了大规模生产,广泛的商业用途和人类消费认证,[27]为HPC提供了生物兼容性和具有成本效益的传感应用的巨大潜力。[17,18,28–30]然而,尽管最近的研究成功地将HPC的间相转化为完全固体的光子结构,例如通过化学交叉链接或HPC侧链的进一步功能化,[11,22,31]这导致动态色彩响应的丧失。因此,HPC机械化色性仅在迄今为止的液体制剂中报道。最后,我们在这项研究中,我们仅使用具有成本效益,生物相容性和广泛可用的原材料证明了机械色素HPC-GEL。我们表明,HPC-Gel可成型为连续未填充的固体,同时保留了剪切稀释的非牛顿反应,这对于液体加工而言是可取的。
文章历史:由于食品物质在从农场到叉子过渡过程中的固有特性和环境因素,因此非常容易损坏。因此,有必要通过在适当的包装中保护食物免受各种因素的影响。包装材料包括柔性小袋和刚性容器,它们具有自己的优点和缺点。当今使用的大多数包装材料都是基于聚合物的,它需要很长时间才能降解并对陆地和水生生物构成危险的威胁。可食用的包装演变为替代传统包装的替代品,这是由于其自然生物聚合物(可降解且易于消耗)。它们表现出改善的障碍和有机疗法的特性,传质的选择性以及包装成分迁移特性降低到食物和环境污染中。它们被归类为涂料,薄膜和小袋,可以用作食物包裹或热密封的袋中,这些小袋直接涂在食物表面上。因此,食用包装是食品包装行业的潜在方法。本评论详细解释了用于膜制备的生物材料,胶片形成涉及的各种过程,不同的涂层方法以及在环保食用包装领域中的最新应用。
