1。smriti mallapaty。如何保护第一个“ CRISPR婴儿”引发道德辩论。自然。2022年2月25日。https://www.nature.com/articles/d41586-022-00512-w 2。Antonio Regalado。 CRISPR婴儿的创建者已从中国监狱释放出来。 MIT技术评论。 2022年4月4日。https://www.technologyreview.com/2022/04/04/04/1048829/he-jiankui-prison-prison-free-crispr-babies/ 3. J. Benjamin Hurlbut。 解码CRISPR的故事。 MIT技术评论。 2021年2月24日。https://www.technologyreview.com/2021/02/24/1017838/crispr-baby-gene-gene-gene-editing-jiankui-history/ 4。 David Cyranoski。 什么Crispr-baby监狱判处男子进行研究。 自然。 2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。 Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。Antonio Regalado。CRISPR婴儿的创建者已从中国监狱释放出来。MIT技术评论。 2022年4月4日。https://www.technologyreview.com/2022/04/04/04/1048829/he-jiankui-prison-prison-free-crispr-babies/ 3. J. Benjamin Hurlbut。 解码CRISPR的故事。 MIT技术评论。 2021年2月24日。https://www.technologyreview.com/2021/02/24/1017838/crispr-baby-gene-gene-gene-editing-jiankui-history/ 4。 David Cyranoski。 什么Crispr-baby监狱判处男子进行研究。 自然。 2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。 Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。MIT技术评论。2022年4月4日。https://www.technologyreview.com/2022/04/04/04/1048829/he-jiankui-prison-prison-free-crispr-babies/ 3.J. Benjamin Hurlbut。 解码CRISPR的故事。 MIT技术评论。 2021年2月24日。https://www.technologyreview.com/2021/02/24/1017838/crispr-baby-gene-gene-gene-editing-jiankui-history/ 4。 David Cyranoski。 什么Crispr-baby监狱判处男子进行研究。 自然。 2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。 Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。J. Benjamin Hurlbut。解码CRISPR的故事。MIT技术评论。 2021年2月24日。https://www.technologyreview.com/2021/02/24/1017838/crispr-baby-gene-gene-gene-editing-jiankui-history/ 4。 David Cyranoski。 什么Crispr-baby监狱判处男子进行研究。 自然。 2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。 Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。MIT技术评论。2021年2月24日。https://www.technologyreview.com/2021/02/24/1017838/crispr-baby-gene-gene-gene-editing-jiankui-history/ 4。David Cyranoski。 什么Crispr-baby监狱判处男子进行研究。 自然。 2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。 Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。David Cyranoski。什么Crispr-baby监狱判处男子进行研究。自然。2020年1月3日。https://www.nature.com/articles/d41586-020-00001-y 5。Patrick Foong。 CRISPR婴儿:故事展开。 Mercatornet。 2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。 海蒂·莱德福德(Heidi Ledford)。 顾问说,应该领导基因组编辑政策。 2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。 当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。Patrick Foong。CRISPR婴儿:故事展开。Mercatornet。2021年12月6日。https://mercatornet.com/the-crispr-babies-the-story-unfolds/76262/ 6。海蒂·莱德福德(Heidi Ledford)。应该领导基因组编辑政策。2021年7月12日。https://www.nature.com/articles/d41586-021-01922-y 7。当归Peebles。 CRISPR先驱期望在25年内看到基因编辑的婴儿。 2022年4月4日。当归Peebles。CRISPR先驱期望在25年内看到基因编辑的婴儿。2022年4月4日。
生殖衰老始于女性的30多岁,更年期通常发生在48至50岁之间,而卵母细胞库存(卵巢衰老)的耗尽是女性一生中不可避免的过程,最终会影响预期和健康的影响。卵巢老化是一个多维过程,其特征是卵泡数量和卵母细胞质量的逐渐下降,大约37岁左右,导致后代的不育和先天性残疾增加(1)。尽管重要性很重要,但对人类卵巢衰老的基本生物学机制知之甚少,尤其是在延长女性生育能力和改善人口质量方面。尽管预期人类的预期寿命在过去一个世纪中显着延长,但绝经年龄在很大程度上保持不变,这暗示了遗传和表观遗传因素的潜在作用,但典范标志着启动的启动偏离衰老的启动,而在47%的案例中,遗传的年龄是遗传的,而不是遗传的年龄。口服避孕药,饮酒,吸烟和体育锻炼水平(3,4)调节这种内分泌老化过渡。最近,下丘脑 - 垂体轴的衰老以及端粒酶活性降低已成为生殖衰老的关键催化剂(5)。卵泡闭锁是由于颗粒和卵母细胞的细胞凋亡引起的,这是由活性氧(ROS)产生过多引起的,也会导致卵巢衰老。Wang L.等。 inWang L.等。in最近的研究使遗传多态性确定为自然更年期年龄异质性的主要贡献者,尤其是对于参与DNA修复途径的基因。病理卵巢衰老,例如早产卵巢不足和早期,也表现出相似的遗传敏感性(6)。这一现象的核心是卵巢功能的卵泡发育和维持,尤其是DNA甲基化的表观遗传修饰,在卵巢发育的关键阶段对基因表达产生了显着影响。这些研究提供了阐明遗传学与环境对卵巢衰老的相互作用的影响。该研究主题重点介绍了描述生理和病理卵巢衰老的遗传和表观遗传机制方面所取得的一些进步,从而提供了对延长女性生殖寿命的潜在机制的见解。研究表明DNA甲基化(DNAM)衰老与生殖衰老之间的联系。但是,DNAM与更年期年龄之间的因果关系仍然不确定。技术进步使使用各种分子或表型生物标志物测量生物年龄成为可能。
弗洛雷斯博士最著名的特征之一是他致力于志愿服务以及与社区的合作。2017年,弗洛雷斯博士加入了棒球运动员卡洛斯·科雷亚(Carlos Correa),为支持癌症儿童的基础创建了基金会。 基金会已经筹集了超过600万美元的供应和药物,并组织了允许儿童享受独特体验的活动,例如参加棒球比赛。 休斯顿的西班牙裔社区在这一支持中起着至关重要的作用,共同为筹款活动而融合了他们的时间和资源。2017年,弗洛雷斯博士加入了棒球运动员卡洛斯·科雷亚(Carlos Correa),为支持癌症儿童的基础创建了基金会。基金会已经筹集了超过600万美元的供应和药物,并组织了允许儿童享受独特体验的活动,例如参加棒球比赛。休斯顿的西班牙裔社区在这一支持中起着至关重要的作用,共同为筹款活动而融合了他们的时间和资源。
尽管用于语义图像编辑的深度神经模型最近取得了进展,但目前的方法仍然依赖于明确的人工输入。先前的工作假设有手动整理的数据集可用于监督学习,而对于无监督方法,需要人工检查发现的组件以识别那些修改有价值语义特征的组件。在这里,我们提出了一种新颖的替代方法:利用大脑反应作为学习语义特征表示的监督信号。在一项神经生理学实验中,向参与者 (N=30) 展示人工生成的面孔并指示他们寻找特定的语义特征,例如“老”或“微笑”,同时通过脑电图 (EEG) 记录他们的大脑反应。使用从这些反应推断出的监督信号,学习生成对抗网络 (GAN) 潜在空间内的语义特征,然后将其用于编辑新图像的语义特征。我们表明,隐性大脑监督实现的语义图像编辑性能与显性手动标记相当。这项工作证明了利用通过脑机接口记录的隐性人类反应进行语义图像编辑和解释的可行性。
摘要 成簇的规律间隔短回文重复序列(CRISPR)和CRISPR相关蛋白(Cas)是细菌和古菌中对抗入侵核酸和噬菌体的适应性免疫系统。根据效应蛋白的组成,CRISPR/Cas大致分为多种类型和亚型。其中,VI型CRISPR/Cas系统尤受关注,有VI-A、VI-B、VI-C和VI-D四个亚型,被认为从转座子进化而来。这些亚型在结构架构和机制上表现出差异,具有多种Cas13a(C2c2)、Cas13b1(C2c6)、Cas13b2(C2c6)、Cas13c(C2c7)和Cas13d效应蛋白。CRISPR/Cas13 核糖核酸酶将前 crRNA 加工成成熟的 crRNA,后者在病毒干扰过程中靶向并敲除噬菌体基因组的单链 RNA。这种蛋白质的高特异性 RNA 引导和 RNA 靶向能力使其能够与多种效应分子融合,为 Cas13 介导的 RNA 靶向、追踪和编辑领域开辟了新途径。CRISPR/Cas13 具有靶向包括植物在内的 RNA 的独特功能,因此可以用作一种新的工具,用于工程干扰植物病原体(包括 RNA 病毒),具有更好的特异性,并可用于植物中的其他 RNA 修饰。荧光探针标记的失活可编程 Cas13 蛋白可用作体外 RNA 研究的替代工具。工程化的 Cas13 也可用于可编程的 RNA 编辑。CRISPR/Cas13 的高靶向特异性、低成本和用户友好的操作使其成为多种基于 RNA 的研究和应用的有效工具。因此,本章的重点是 CRISPR/Cas 系统的分类、VI 型 CRISPR/Cas 系统的结构和功能多样性,包括其发现和起源、机制以及 Cas13 在植物 RNA 编辑中的作用。
众所周知,农业和森林生态系统充当陆地生态系统中的重要碳。了解面对气候变化时生态系统碳周期的基本过程和机制对于量化陆地生态系统的碳汇至关重要。生态系统碳循环不能与水和氮循环分开,因此不能在农业和森林生态系统中对气候变化的碳水氮过程的反应和适应性进行进一步研究。该研究主题发表了10篇论文,以获得对农业和森林生态系统中碳 - 水氮相互作用的基本机制和过程的新见解,以响应气候变化。垃圾分解是一个关键的生物地球化学过程,它对森林和草原生态系统中的碳和氮循环深刻影响。气候因素可以显着影响垃圾分解速率,碳固换以及CO 2和N 2 O.CO 2和N 2 O.的温室气体的排放。对37个发表研究的351个样本进行了全面的元分析,以探讨太阳辐射和降水对垃圾分解和CO 2发射的互动效应。他们发现太阳辐射显着增加了垃圾分解,这取决于降水状态。同时,Li等人。通过对青海藏高原上的长期操纵变暖实验,研究了变暖和开垦对N 2 O发射的影响。他们的结果表明,通过增强土壤硝化和相关的
● 数字逮捕诈骗 - ED 提交指控表 ● 报告揭示 2023 年对关键防御单位的勒索软件攻击 ● NSCN (IM) 要求第三方干预纳加冲突 ● 印度测试其第一枚高超音速导弹 ● 印度成功测试 K-4 核导弹 ● 四个机械化步兵营获得总统的颜色 ● 三军演习“Poorvi Prahar” ● 印度、日本签署协议,为印度海军战舰提供 UNICORN 桅杆 ● 梅加拉亚邦叛乱组织 HNLC 被禁止五年 ● 中心在 6 个动荡的曼尼普尔地区重新实施 AFSPA ● 首次太空演习“Antariksha Abhyas – 2024” ● 内政部批准 CISF 的第一个全女性营 ● DRDO 进行 LRLACM 的首次测试 ● Shaurya Gatha 项目 ● 2024 年反恐会议 ● 10 名武装分子在袭击中死亡曼尼普尔中央后备警察部队营地
生物伦理学的标准观点区分了可能伤害或使特定个体受益的“影响个人”干预(例如通过基因组编辑)和决定哪个个体诞生的“影响身份”干预(例如通过基因选择)。斯帕罗对过去几十年来有关生殖技术争论的核心假设之一提出了质疑。他认为,对人类胚胎的直接基因改造不应归类为“影响个人”,而应归类为“影响身份”,因为在可预见的未来,任何基因组编辑“几乎肯定”涉及创建和编辑多个胚胎,以及通过植入前基因诊断选择“最佳”胚胎。斯帕罗还认为,“影响个人”和“影响身份”干预之间的区别具有至关重要的伦理意义:“我们选择胚胎的理由比我们修改胚胎的理由要弱”(Sparrow 2022 )。因此,他将基因组编辑归类为“影响身份”的干预,并得出结论,即使人们认为增强是道德义务,也没有理由要求制定法律来增强。在这篇评论文章中,我们更进一步质疑了有关生殖技术的生物伦理辩论中的核心假设。我们认为,“影响个人”和“影响身份”干预之间的区别是基于一种值得怀疑的物质起源本质主义。对这种本质主义的人类身份方法的质疑使得我们可以将基因组编辑和基因选择视为比标准方法中更相似的东西。它
目前的研究主题,标题为“内分泌和代谢性疾病中的Wnt信号传导”旨在强调Wnt信号传导途径在人类内分泌学中的功能作用,重点是代谢疾病。内分泌和代谢性疾病包括影响各种器官系统和生理过程的广泛疾病。Wnt信号通路最初以其在胚胎发育和组织稳态中的作用而被认可(1,2),在几种人类疾病(包括癌症)的发病机理中已成为至关重要的参与者(3,4),并极大地有助于疾病进展和潜在的治疗效果(5-7)。The fi rst study in this Research Topic clari fi ed that one of the mechanisms by which the “ Modi fi ed Qing ' E Formula ” (MQEF), used for more than 1,300 years in China as a treatment for lumbodynia, may exert its therapeutic effect on steroid-induced ischemic necrosis of the femoral head, is through targeting exosomal microRNAs (miRNAs) to regulate multiple信号通路,包括Wnt,PI3K-AKT和MAPK(Zhu等人)。在调查miRNA和WNT信号传导的另一份原始报告中,Tripathi等。证明成骨细胞中的miR-539-3p过表达下调了Wnt信号通路的几个组成部分,并恶化小梁的微体系结构,导致卵巢切除的小鼠的骨形成减少。在我们的研究主题的第三篇原始文章中,一组由小小的TU领导的研究者发现,小分子C91(CHIR99021)通过激活Wnt信号来促进骨髓基质细胞的成骨分化(Wang等人(Wang等))。
