文本到图像模型近年来已显示出进展。随着这一进展,从文本中生成向量图也已提出。svg是向量图形的流行效果,SVG代表带有XML文本的场景。因此,大型语言模型可以直接处理SVG代码。考虑到这一点,我们专注于使用LLMS编辑SVG。用于定量评估LLMS编辑SVG的能力,我们提出了SVGeditBench。svgeditBench是评估LLMS编辑SVG代码能力的基准。在提议的基准下进行评估时,我们还显示了GPT-4和GPT-3.5结果。在实验中,GPT-4在定量和质量上都显示出与GPT-3.5的优势。该数据集可在https://github.com/mti-lab/svgeditBench上找到。
环境变化和人口增长是农作物生产和整个粮食安全的主要问题。为了解决这个问题,研究人员一直致力于改良谷物和豆类,并在本世纪初取得了相当大的进展。然而,如果没有蔬菜和水果,谷物和豆类加在一起不足以满足人类生活的饮食和营养需求。生产优质的蔬菜和水果极具挑战性,因为它们易腐烂、保质期短,而且在收获前后会遇到非生物和生物压力。通过引入外来基因来生产转基因作物,可以生产出优质、延长保质期和抗逆性、改变开花和果实成熟的时间的转基因作物,这种方法非常成功。然而,一些生物安全问题,如转基因异交风险,限制了它们的生产、营销和消费。现代基因组编辑技术,如 CRISPR/Cas9 系统,在这种情况下提供了一个完美的解决方案,因为它可以生产无转基因的转基因植物。因此,这些基因编辑植物可以轻松满足农作物生产和消费的生物安全规范。本综述重点介绍了 CRISPR/Cas9 系统在成功产生非生物和生物胁迫抗性方面的潜力,从而提高了蔬菜和水果的质量、产量和整体生产力。
请引用本文:Toda and Okamoto,(2020)。通过将大分子直接递送到水稻卵细胞和受精卵中的基因表达和基因组编辑系统,Bio-protocol 10 (14): e3681。DOI:10.21769/BioProtoc.3681。
肝脏是细胞和基因治疗以及基因编辑的首选器官,因为遗传性疾病众多且常常危及生命。已证明酪氨酸血症小鼠作为模型生物的 HDR 可以纠正该疾病,尽管不诱导 DSB 的同源重组效率非常低(Paulk 等人,2010 年;Junge 等人,2018 年)。在类似的小鼠模型中,通过流体动力学 DNA 注射(Yin 等人,2014 年)和非病毒 Cas9 mRNA 与腺相关病毒 (AAV) 载体介导的 HDR 模板递送相结合(Yin 等人,2016 年)证明了 CRISPR/Cas9 介导的表型拯救。AAV 载体已成为肝脏的基因递送载体,据报道在人体临床试验中具有令人印象深刻的治疗效果(Nathwani 等人,2014 年)。最近,在一个载体上编码化脓性链球菌 Cas9 (SpCas9) 表达盒,在另一个载体上编码引导 RNA (gRNA) 和修复模板的双 AAV 载体系统的应用,逆转了新生小鼠鸟氨酸转氨甲酰酶基因的突变 ( Yang et al., 2016 )。这种体内基因编辑工具在两个载体上的分段归因于 AAV 的拟议包装尺寸限制,即 4.9 kb ( Grieger and Samulski, 2005 ) 至 5 kb ( Wu et al., 2010 )。两种不同的 AAV 载体共同递送是可行的,每种载体编码所需成分的一部分,这些成分在细胞内通过转剪、同源重组或内含肽重新结合( Truong 等人, 2015 ),但在体内发生率较低( Xu 等人, 2004 )。
Judith 是 FDA、CBER 组织和先进疗法办公室 (OTAT) 的国际监管专家。她在 OTAT 的主要职责是促进细胞、组织和基因疗法监管要求的国际协调,并领导 OTAT 监管产品的标准制定活动。在标准方面,她与国家标准与技术研究所和标准协调机构密切合作,以促进先进疗法的标准制定。她代表 FDA 参加 ISO 技术委员会 276、生物技术、ASTM F04 组织工程产品委员会和肠外药物协会标准委员会。她在国际监管要求协调方面的工作包括担任国际药品监管机构计划细胞治疗工作组和基因治疗工作组的秘书处。她是亚太经合组织监管协调小组委员会先进疗法优先工作领域的联合主席,并担任东北大学监管卓越中心和杜克大学医学院-新加坡国立大学监管卓越计划的教员。
基因由 DNA 组成,本质上是生命的指令。它们决定了我们的身体特征和特性。几个世纪以来,人类一直在培育植物和动物以选择特定的遗传特性,但直到最近,生物技术的进步才使我们能够物理地操纵生物体的基因。CRISPR 是一种可以针对特定基因的基因编辑工具,可让科学家进行精确的基因组编辑。能够以这种方式编辑基因可能会对我们预防疾病的方式产生巨大影响。但是,使用这项技术也引发了巨大的生物伦理问题。2018 年末,一名中国研究人员透露,他创造了有史以来第一个基因编辑婴儿。他在双胞胎女孩出生前改变了她们的 DNA,这意味着这些基因变化将传递给后代。基因编辑有朝一日甚至可以用来让父母为未出生的孩子选择特定的特征。人类在改变生命时应该走多远?
文章标题:评论:真菌细胞中的CRISPR/CAS12介导的基因组编辑:植物 - 真菌病理学中的进步,机制和未来方向作者:Chiti Agarwal [1],Vishnutej Ellur [1]附属机构[1]附属机构:华盛顿州立大学[1] ORCID IDS:0000-000-000-0003-41125-25-25-8880 [1] chiti.agarwal@gmail.com许可证信息:这项工作已在Creative Commons Attribution许可证下发布开放访问http://creativecommons.org/licenses/by/4.0/,只要适当引用任何原始工作,该工作就允许在任何媒介中进行无限制的使用,分发,分发和复制。可以在https://www.scienceopen.com/上找到条件,使用条款和发布政策。预印度语句:本文是预印本,未经同行评审,正在考虑,并提交给ScienceOpen的预印本进行开放的同行评审。doi:10.14293/pr2199.000129.v1预印本在线发布:2023年5月14日关键字:CRISPR,CRISPR/CAS12,真菌病原体,植物病原体
腺苷到肌苷 (A-to-I) 编辑是一种保守的真核 RNA 修饰,有助于发育、免疫反应和整体细胞功能。RNA 编辑模式在不同细胞和组织类型之间可能存在显著差异,而过度活跃的 A-to-I 特征则表明存在多种疾病,包括癌症和自身免疫性疾病。由于这些差异具有生物学和临床重要性,因此迫切需要有效的方法来测量细胞 RNA 中的整体 A-to-I 编辑水平。当前的标准方法依赖于 RNA-seq 来间接检测编辑位点,这需要大量时间和材料投入以及大量的计算分析。在这里,我们利用核酸内切酶 V (EndoV)(它特异性地与 RNA 中的肌苷结合)来开发基于蛋白质的化学发光生物测定法,以直接分析 A-to-I RNA 编辑活性。我们之前展示了 EndoV 可以在 RNA 测序之前结合并丰富 A-to-I 编辑的转录本,现在我们利用这一活性构建 EndoV 连接免疫吸附测定 (EndoVLISA),作为一种快速的、基于板的化学发光方法,用于测量细胞 RNA 中的全局 A-to-I 编辑特征。我们首先使用化学合成的寡核苷酸优化和验证我们的测定方法,说明对 RNA 中的肌苷具有高度选择性和灵敏度的检测。然后,我们展示了对处理过的细胞系中肌苷含量的快速检测,证明了与当前标准 RNA 测序方法相当的性能。最后,我们部署了 EndoVLISA 来分析正常和患病人体组织中的差异 A-to-I RNA 编辑特征,说明了我们的平台作为诊断生物测定的实用性。总之,EndoVLISA 方法经济高效、简单易用,并且使用常见的实验室设备,为研究 A-to-I 编辑提供了一种高度可用的新方法。此外,多孔板格式使其成为第一个适用于直接高通量量化 A-to-I 编辑的检测方法,可用于疾病检测和药物开发。
花粉粒的数量在物种内和物种间存在差异。然而,与雄蕊细胞分化方面的研究相比,人们对这一数量性状的分子基础知之甚少。最近,通过拟南芥的全基因组关联研究,分离出了第一个负责花粉数量变异的基因 REDUCED POLLEN NUMBER1 (RDP1),并表现出自然选择的特征。该基因编码酵母 Mrt4 (mRNA 转换 4) 的同源物,它是大核糖体亚基的组装因子。然而,没有进一步的数据将核糖体功能与花粉发育联系起来。在这里,我们使用标准 A. thaliana 登录号 Col-0 表征了 RDP1 基因。由 CRISPR/Cas9 产生的移码突变体 rdp1-3 揭示了 RDP1 在开花中的多效性作用,从而表明该基因是花粉发育以外的多种过程所必需的。我们发现,天然的 Col-0 等位基因导致 Bor-4 等位基因的花粉数量减少,这是通过定量互补测试评估的,该测试比转基因实验更敏感。结合通过序列比对确定的 Col-0 中的历史重组事件,这些结果表明 RDP1 的编码序列是导致自然表型变异的候选区域。为了阐明 RDP1 参与的生物学过程,我们进行了转录组分析。我们发现负责核糖体大亚基组装/生物合成的基因在差异调控基因中富集,这支持了 rdp1-3 突变体中核糖体生物合成受到干扰的假设。在花粉发育基因中,编码碱性螺旋-环-螺旋 (bHLH) 转录因子的三个关键基因(ABORTED MICROSPORES ( AMS )、bHLH010 和 bHLH089 )以及 AMS 的直接下游基因在 rdp1-3 突变体中下调。总之,我们的结果表明核糖体通过 RDP1 在花粉发育中发挥特殊功能,RDP1 含有受选择的天然变体。
摘要:胸膜间皮瘤 (PM) 是一种可观察到上皮样、双相性和肉瘤样组织类型的癌症。肉瘤样 PM 以间充质特征为特征。多组学已用于在分子水平上表征上皮-间充质 (EMT) 表型。我们通过纳入 RNA 编辑分析为此做出了贡献。我们从两个 PM 队列中提取了上皮评分最高与最低的样本,并观察到 EMT 后内含子中的 RNA 编辑增加而 3′UTR 中的 RNA 编辑减少。在通过转录组学分析分层为两组的原代 PM 原代培养物中也观察到了同样的情况,其中一组富集了间充质特征。我们的数据表明,与在其他癌症类型中观察到的情况一样,RNA 编辑与 PM 中的 EMT 表型相关。