草鱼 10.5 X 鲢鱼 8.8 尼罗罗非鱼 8.3 XX 鲤鱼 7.7 X 鳙鱼 5.8 卡特拉鱼 5.6 鲫鱼 5.1 颜色 大西洋鲑鱼 4.5 X 颜色,脂肪酸代谢 条纹鲶鱼 4.3 南亚鲮 3.7 X 虱目鱼 2.4 鱼雷鲶鱼 2.3 虹鳟鱼 1.6 X 武昌鲷 1.4 青鱼 1.3 黄鲶 0.9 X 斑点叉尾鲶 - XXX 大型泥鳅 - 颜色 牙鲆 - X 太平洋蓝鳍金枪鱼 - 游泳行为 太平洋牡蛎 - 肌球蛋白功能 赤鲷 - X 白虾 - 几丁质酶功能 南方鲶鱼 - X 虎斑河豚 - X
本课程专为本科生和研究生、研究学者和青年科学家设计,向他们介绍基因组编辑和工程的基础知识和应用。本课程从了解基因组的基本组织和结构开始。它简要概述了不同的 DNA 链断裂及其修复机制。它向学习者介绍了基因工程的理论基础,并讨论了它在解决动物和植物遗传问题方面的局限性。本课程深入讨论了基因组编辑的关键概念,重点介绍了主要的基因组编辑工具 ZFN、TALEN 和 CRISP/Cas9。它讨论了基因组编辑工具开发的生化基础、它们的设计及其在各种遗传条件下的应用。它还讨论了使用这些技术解决人类主要遗传疾病的范围和前景。学习者还将了解与基因组编辑和工程在生殖系中的应用相关的伦理问题。
基因编辑技术有很多种,其中包括 ZFN(锌指核酸酶)、TALEN(转录激活因子样效应核酸酶)以及最广为人知的 CRISPR-Cas9(成簇的规则间隔短回文重复序列,C RISPR 相关蛋白 9)(PMID:27908936)。CRISPR-Cas9 基因组编辑系统的发现被视为科学上的一项重要突破,首席研究员 Jennifer Doudna 博士和 Emmanuelle Charpentier 博士因此获得了 2020 年诺贝尔化学奖(https://www.nobelprize.org/uploads/2020/10/popular-chemistryprize2020.pdf)。 “编辑”一个基因来改变其功能为治疗遗传疾病带来了巨大的希望,特别是那些无法彻底治愈的疾病,例如 GM2 神经节苷脂沉积症、GM1 神经节苷脂沉积症和卡纳万病。
目的:这项研究的目的是评估M.15059G>线粒体废话突变对与动脉粥样硬化相关的细胞功能的影响,例如脂性病,炎症反应和线粒体。杂质突变已被提出是线粒体功能障碍的潜在原因,可能会破坏先天免疫反应,并导致与动脉粥样硬化有关的慢性炎症。方法:使用人类单核细胞系THP-1和细胞质杂化细胞系TC-HSMAM1。开发了一种基于CRISPR/CAS9系统的原始方法,并用于消除MT-Cyb基因中携带M.15059G> A突变的线粒体DNA(mtDNA)副本。使用定量聚合酶链反应分析了与胆固醇代谢相关的编码酶的基因的表达水平。使用酶联免疫吸附测定法评估促炎性细胞因子分泌。 使用共聚焦显微镜检测细胞中的线索。 结果:与完整的TC-HSMAM1 CYBRIDS相反,Cas9-TC-HSMAM1细胞在与动脉粥样硬化的低密度脂蛋白孵育后表现出脂肪酸合酶(FASN)基因表达的降低。 发现 TC-HSMAM1 cybrids有缺陷的线粒体,并且无法下调反复脂肪糖刺激后促炎性细胞因子的产生(以建立免疫耐受性)。 去除具有M.15059G>的mtDNA突变导致免疫耐受性的重新建立和正在研究的细胞中线索的激活。促炎性细胞因子分泌。使用共聚焦显微镜检测细胞中的线索。结果:与完整的TC-HSMAM1 CYBRIDS相反,Cas9-TC-HSMAM1细胞在与动脉粥样硬化的低密度脂蛋白孵育后表现出脂肪酸合酶(FASN)基因表达的降低。TC-HSMAM1 cybrids有缺陷的线粒体,并且无法下调反复脂肪糖刺激后促炎性细胞因子的产生(以建立免疫耐受性)。去除具有M.15059G>的mtDNA突变导致免疫耐受性的重新建立和正在研究的细胞中线索的激活。结论:M.15059G>由于单核细胞和巨噬细胞中FASN的上调而导致细胞内脂质的有缺陷,免疫耐受性以及细胞内脂质的代谢受损相关。
Breeding 4.0 : Molecular breeding, New Breeding Technologies: Genetic Manipulation, Gene Editing; AgTech - Digital and Precision agriculture, robotics – the next generation of disruptive technologies revolutionising the agriculture and food sector.
Bestrahlt wurde die gesamte Palette der wichtigsten Nahrungspflanzen. Auf den Markt gelangten u.a . mutierter Reis, Hafer, Raps, Soja, Kichererbse, Erdnüsse, Bohnen und viele Obst- und Gemüsesorten. Über 3000 Sorten in etwa 200 Arten sind bisher registriert worden (http://mvgs.iaea.org). Nahezu alle Gerstensorten in Europa tragen eines von zwei Genen, die durch Strahlen mutagenisiert wurden und dazu führen, dass die Ähren auf verkürzten und stabileren Stengeln wachsen.