基于扩散的生成模型在合成和操纵图像具有巨大的图像方面表现出了令人鼓舞的结果,其中文本到图像模型及其后续作品在学术界和行业中都具有很大的影响。编辑真实图像时,用户通常希望对不同元素具有直观而精确的控制(即对象)组成图像,并不断地操纵它们。我们可以根据图像中的单个观察的控制级别对现有的图像编辑方法进行分类。一条工作涉及使用文本提示来操纵图像[2,15,24,27]。由于很难与文本同时描述多个对象的形状和外观,因此在对象级别上对细粒度控制的能力有限。同时,迅速的工程使操纵任务乏味且耗时。另一项工作线使用低级调理信号,例如Hu等人。[18],Patashnik等。[34],Zeng等。[58],草图[50],图像[5,47,54]编辑图像。但是,其中大多数作品要么属于迅速的工程陷阱,要么无法独立操纵多个对象。与以前的作品不同,我们的目标是独立控制组成图像的多个对象的正确条件,即对象级编辑。我们表明,我们可以在对象级编辑框架下制定各种图像编辑任务,从而实现全面的编辑功能。
编辑效率不足在很大程度上限制了引物编辑系统在构建基因组编辑动物中的应用。本研究验证了 pegRNA 和 epegRNA 的 PBS Tm 对编辑效率的影响。发现最佳 Tm 为 42°C,且受培养温度的影响。然后,我们在 N2a 细胞中测试了各种提高引物编辑效率的策略,ePE3max 和 ePE5max 表现出显著提高编辑效率。然而,只有 ePE3max 在小鼠和兔胚胎中表现出相当高的编辑效率。我们的结果表明
自 1991 年以来,美国能源部斯坦福现场办公室向能源部总部项目办公室赞助商报告斯坦福线性加速器中心 (SLAC) 项目和问题。14 年来,马丁·W·莫洛伊博士一直担任斯坦福现场办公室周报的编辑。5 月 3 日,在他为能源部和美国国家航空航天局服务 39 年后退休。莫洛伊博士出生于纽约市北部布朗克斯区,就读于只提供奖学金的曼哈顿里吉斯高中和哥伦比亚大学。他主修矿物学(硕士、地质学博士),将野外测绘、X 射线衍射和荧光(他整个职业生涯的核心主题)应用于犹他州中部图沙尔山脉火山岩中的铀矿化。作为德士古油田地质学家,莫洛伊博士在加州海岸文图拉盆地以下 15,000 英尺处勘探石油。在加州理工学院喷气推进实验室,他是首批月球和行星地质学家之一,开发了回收土壤的方法,以便海盗号火星着陆器探测生命。作为勘测项目科学家,莫洛伊博士领导了一系列三足航天器的月球探索,这些航天器于 1966-68 年登陆月球。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2021 年 1 月 11 日发布。;https://doi.org/10.1101/2021.01.11.426237 doi:bioRxiv preprint
利益竞争:加州大学董事会已获得和正在申请 CRISPR 技术专利,JAD 和 GJK 是这些技术的发明者。JAD 是 Caribou Biosciences、Editas Medicine、Scribe Therapeutics 和 Mammoth Biosciences 的联合创始人。JAD 是 Caribou Biosciences、Intellia Therapeutics、eFFECTOR Therapeutics、Scribe Therapeutics、Mammoth Biosciences、Synthego 和 Inari 的科学顾问委员会成员。JAD 是强生公司的董事,其研究项目由 Biogen 和辉瑞公司赞助。PAB 是 Beam Therapeutics 的顾问,拥有股票期权。DRL 是 Editas Medicine、Pairwise Plants、Beam Therapeutics 和 Prime Medicine 的顾问和联合创始人,这些公司使用基因组编辑技术。作者已提交了进化 ABE 的专利申请。
+RZDUG +XJKHV 0HGLFDO ,QVWLWXWH +DUYDUG 8QLYHUVLW\ &RUUHVSRQGHQFH WR MGRHQFK#EURDGLQVWLWXWH RUJ 8QGHUVWDQGLQJ WKH IXQFQFQHQXQHQHQXT FOHRWLGH YDULDQWV LV FULWLFDO WR XQFRYHULQJ WKH JHQHWLF XQGHUSLQQLQJV RI GLVHDVHV EXW WHFKQRORJLHV WR FKDUDFWHUL]H YDULDQWV DUHJ OLQHWHJH 55 & 5JHVH &H WRVLQH EDVH HGLWRUV LQ SRROHG VFUHHQV WR VFDODEO\ DVVD\ YDULDQWV DW HQGRJHQRXV ORFL LQ PDPPDOLDQ FHOOV :H EHQFKPDUN WKH SHUIRUPDQFH RI VGLWHQLWHQLWHW LYH VHOHFWLRQ VFUHHQV DQG LGHQWLI\ NQRZQ ORVV RI IXQFWLRQ PXWDWLRQV LQ %5&$ DQG %5&$ ZLWK KLJK SUHFLVLRQ 7R GHPRQVWUDWH WKH\HWHWHWHWHVH SUREH VPDOO PROHFXOH SURWHLQ LQWHUDFWLRQV ZH FRQGXFW VFUHHQV ZLWK %+ PLPHWLFV DQG 3$53 LQKLELWRUV DQG LGHQWLI\ SRLQW PXWDWLRQV WKDWLWLWHVHVHVH VWDQFH )LQDOO\ ZH FUHDWH D OLEUDU\ RI FOLQLFDOO\ REVHUYHG YDULDQWV LQ JHQHV DQG FRQGXFW VFUHHQV LQ WKH SUHVHQFH RI FHOOXODU VWUHVLIGWWQLVQLWQLR\ LDQWV LQ QXPHURXV '1$ GDPDJH UHSDLU JHQHV :H DQWLFLSDWH WKDW WKLV VFUHHQLQJ DSSURDFK ZLOO EH EURDGO\ XVHIXO WR UHDGLO\ DQG VFDODEO\ IXQFWH]FQWHWL Y728 &7,21 $ PDMRU FKDOOHQJH LQ JHQRPLFV LV WKH IXQFWLRQDO FKDUDFWHUL]DWLRQ RI SUHFLVH JHQHWLF YDULDQWV DW D ODUJH VFDOH $OWKRXJK JHQRPH ZLGHVVXLWHWLVXLWHQ6 * LILHG WHQV RI WKRXVDQGV RI DVVRFLDWLRQV EHWZHHQ VLQJOH QXFOHRWLGH SRO\PRUSKLVPV 613V DQG SKHQRW\SHV LGHQWLILFDWLRQ RI WKH FDXVDO YDULDJVKWGWLQVJVJWKWK H IXQFWLRQDO FRQVHTXHQFH RI D FDXVDO YDULDQW LV PRUH GLIILFXOW VWLOO W\SLFDOO\ UHTXLULQJ ORZ WKURXJKSXW JHQRPH HGLWLQJ WR LQWURGXFH YKDUXDWKWKWHWQL QDO VLJQLILFDQFH )XQFWLRQDO FKDUDFWHUL]DWLRQ RI JHQHWLF YDULDQWV LV DOVR D ERWWOHQHFN IRU UDUH GLVHDVH UHVHDUFK DQG FDQFHU JHQRPLFVOD FLQLQLQLQVH LQVR K FRQWH[WV RIWHQ XQFRYHUV YDULDQWV WKDW UHPDLQ XQWHVWHG IRU WKHLU IXQFWLRQDO FRQVHTXHQFH IXUWKJU H[SDQGLQJ WKH OLVW RI YDULDQWV RIFQLQFDJFD80JFDH6\ WHFKQRORJLHV IRU YDULDQW VFUHHQLQJ ± VRPHWLPHV FDOOHG PXOWLSOH[HG DVVD\V RI YDULDQW HIIHFWV RU 0$9(V 6WDULWD HW DO :HLOH HW DO RIIHU GLI ± QWHQWHVHVHVHV V 2QH JHQHUDO FDWHJRU\ RI 0$9(V DUH DVVD\V LQ ZKLFK D SUHGHILQHG VHW RI YDULDQWV
专题文章 新的夜灯地图开辟了可能的实时应用 31 增强 NASA 的可发现性 NASA 的 CYGNSS 卫星星座地球科学数据通过数字方式开始公共数据发布 33 对象标识符 (DOI) 4 AIRS:15 年的观察空气中的事物 34 四月份的宣传活动使公众对常规专题的认识不断提高 NASA 的科学活动 9 新闻中的 NASA 地球科学 36 会议摘要 NASA 科学任务理事会 – 科学教育和公共宣传更新 38 NASA-世界银行全球科学日历研讨会 39 降水测量应用 13 北极-北方变化实验提醒:要查看彩色新闻稿图像,请访问 (ABoVE) 科学团队摘要 17 eospso.nasa.gov/earth-observer-archive。Landsat 科学总结团队:2017 年冬季会议 21 2016 年 HyspIRI 研讨会总结 26
2021 年 2 月 1 日——安全卓越发展中心。国防反情报和安全局。938 Elkridge Landing Road。马里兰州林西科姆 21090。@mail.mil。
将载脂蛋白 B mRNA 编辑酶、催化性多肽样胞苷脱氨酶与催化功能受损的 Cas 蛋白(例如 nCas9 或 dCas9)融合,提供了一种新型基因编辑技术,即碱基编辑,可高效地实现靶向碱基替换。然而,在碱基编辑中观察到全基因组和全转录组脱靶突变,这引发了对治疗应用的安全性担忧。之前,我们开发了一种新的碱基编辑系统,即 transformer 碱基编辑器 (tBE),可在哺乳动物细胞和小鼠中诱导高效编辑,且不会观察到全基因组或全转录组脱靶突变。这里我们描述了设计和应用 tBE 的详细方案。本方案包括设计单向导 RNA (sgRNA) 和辅助 sgRNA 对、构建构建体、确定全基因组和转录组范围的脱靶突变、生产含有 tBE 的腺相关病毒、将腺相关病毒递送到小鼠体内以及检查体内编辑效果的步骤。使用 sgRNA-辅助 sgRNA 对,tBE 的高精度碱基编辑可以在 2-3 周内(在哺乳动物细胞中)或 6-8 周内(在小鼠中)完成。整个过程可以由研究人员使用分子生物学、生物信息学和小鼠饲养的标准技术共同完成。
1 博伊斯汤普森研究所,纽约州伊萨卡 14853,美国;2 马里兰大学植物科学与景观建筑系,马里兰州帕克分校,美国;3 扬州大学农学院,江苏省作物基因组学与分子育种重点实验室/植物功能基因组学教育部重点实验室,扬州 225009,中国;4 扬州大学江苏省粮食作物现代生产技术协同创新中心,扬州 225009,中国;5 康奈尔大学植物育种与遗传系,纽约州伊萨卡 14853;6 马里兰大学生物科学与生物技术研究所,马里兰州罗克维尔 20850。Ɨ 上述作者对本文贡献相同。