碱基编辑器是一类新的可编程基因组编辑工具,它将 ssDNA(单链 DNA)修饰酶与催化失活的 CRISPR 相关(Cas)核酸内切酶融合,以诱导高效的单碱基变化。目前已报道了数十种碱基编辑器,显然这些工具是高度模块化的;ssDNA 修饰酶和 Cas 蛋白的多种组合产生了各种碱基编辑器,每种编辑器都有其独特的属性和潜在用途。从这个角度来看,我们描述了当前可用的碱基编辑器,强调了它们的模块化特性并描述了每个组件可用的各种选项。此外,我们简要讨论了合成生物学和基因组工程中的应用,在这些应用中,碱基编辑器比其他技术具有独特的优势。
1. 纽约基因组中心,纽约州纽约市,美国。2. 纽约大学生物学系,纽约州纽约市,美国。† 这些作者贡献相同。 * 电子邮件:neville@sanjanalab.org 关键词:Prime 编辑、CRISPR、致病变异、ClinVar、人类遗传变异
基因组编辑正在彻底改变植物研究和作物育种。序列特异性核酸酶 (SSN),例如锌指核酸酶 (ZFN) 和 TAL 效应核酸酶 (TALEN),已用于产生位点特异性 DNA 双链断裂并通过促进同源定向修复 (HDR) 实现精确的 DNA 修饰 (Steinert 等人,2016 年;Voytas,2013 年)。后来,RNA 引导的 SSN,例如 CRISPR-Cas9、Cas12a、Cas12b 及其变体,已应用于植物基因组编辑 (Li 等人,2013 年;Nekrasov 等人,2013 年;Tang 等人,2017 年;Zhong 等人,2019 年;Ming 等人,2020 年;Tang 等人,2019 年)。然而,HDR 依赖于 SSN 和 DNA 供体的同时递送,这在植物中一直具有挑战性( Steinert 等,2016; Zhang 等,2019)。在植物中实现高效 HDR 的另一个挑战是,在大多数细胞类型中,DNA 修复倾向于非同源末端连接(NHEJ)途径而不是 HDR( Puchta,2005; Qi 等,2013)。与受供体选择和 DNA 修复机制限制的 SSN 诱导的 HDR 不同,近年来开发的胞苷或腺嘌呤碱基编辑器可以在原型间隔物中 3-8 个核苷酸靶向窗口内将 C 转换为 T 或将 A 转换为 G( Komor 等,2016; Nishida 等,2016; Gaudelli 等,2017)。碱基编辑器虽然效率很高,但只能指导某些转换突变,而不能执行预定的颠换突变或插入和缺失 (indel)。在所有这些背景下,最近在人类细胞中开发所谓的引物编辑器 (PE) 方面取得的突破非常令人兴奋 ( Anzalone 等人,2019 )。在引物编辑中,Cas9H840A 切口酶与逆转录酶融合。融合蛋白在编辑 DNA 链上切口,通过引导到切口 DNA 并复制由引物编辑向导 RNA (pegRNA) 编码的遗传信息来启动逆转录。多功能的 pegRNA 是一种经过修饰的单向导 RNA (sgRNA),其 3' 端携带逆转录 (RT) 模板和引物结合位点 (PBS) 或序列中的引物。与 HDR 不同,PE 不需要 DNA 供体。在某些目标位点,PE 似乎也比碱基编辑器更精确、更高效(Anzalone 等人,2019 年)。
• DLVR-M 平台提供了新功能,可将各种不同的蛋白质和/或 RNA 货物递送至各种不同类型的细胞,同时可能降低免疫原性,因为包膜蛋白来源于人体细胞并在人体细胞中表达。 • 我们预计这些新粒子将广泛应用于许多研究和治疗应用,而这些应用目前受到现有递送方式的功能和特性的限制。 • 这项工作引入了新型包膜,并展示了 DLVR-M 平台在体内和治疗相关原代细胞中有效递送大分子的能力和潜力,而这些细胞通常不接受传统的递送方式。 • 未来的工作将包括更详细地描述这些新型粒子的物理特性和免疫学特征。 致谢
摘要Prime Editor(PES)是定期间隔的短篇小说重复序列(CRISPR)基于基于基于)的基因组工程工具,可以引入精确的基本配置编辑。我们开发了一条自动管道,以纠正(治疗性编辑)或引入(疾病建模)人类的致病变异,该变异能够阐明主要编辑所需的几种RNA构建体的设计,并避免了人类基因组中预测的非目标。但是,使用最佳的PE设计标准,我们发现只有一小部分这些致病性变体才能得到焦油。通过使用替代CAS9酶和扩展模板,我们将可靶向的病原变体的数量从32,000增加到56,000个变体,并使这些预先设计的PE构建体可通过基于Web的门户(http://primeedit.nygenome.org)访问。鉴于具有治疗基因编辑的巨大潜力,我们还评估了开发通用PE构建体的可能性,发现常见遗传变异仅影响少数少数设计的PE。
定义AI是一个广阔的领域,在历史上认为需要人类智能的每种形式任务的计算机。llms是AI最近的突破,允许计算机生成似乎来自人类的文本。llms涉及语言的生成,而更广泛的术语生成的AI也可以包括AI生成的图像或无花果。chatgpt是最早且广泛使用的LLM之一,但其他公司也开发了类似的产品。llms“学习”以对大规模文本训练数据库中的单词序列进行多方面分析,并使用复杂的概率模型生成新的单词序列。该模型具有随机的组件,因此对完全相同的提示子插条多次响应不会是基本的。llms可以生成看起来像《响应中医学期刊》文章的文本
Artixcial Intelligence(AI)是一个广泛的Xeld,计算机执行历史上认为需要人类智能的任务。llms是AI最近的突破,它允许计算机生成看起来像人类的文本。llms涉及语言生成,而更广泛的术语“生成AI”也可以包括AI生成的图像或XGures。chatgpt是最早且广泛使用的LLM型号之一,但其他公司也开发了类似的产品。llms“学习”以对大规模文本训练数据库中的单词序列进行多方面分析,并使用复杂的概率模型生成新的单词序列。该模型具有随机组件,因此对完全相同提示的完全相同提交的响应将不相同。llms可以生成看起来像医学期刊文章的文本,以响应提示,但是文章的内容可能准确也可能不准确。llms可能会“包容”包含虚假信息的令人信服的文本。llms不会在互联网上搜索问题的答案。但是,它们以越来越复杂的方式与搜索引擎配对。在本社论的其余部分中,我们将使用LLMS代名词的广义术语“ AI”。
基于CRISPR的摘要定向进化是一种有效的繁殖生物技术,可改善植物中的农艺特征。然而,使用单个单个指南RNA,其基因多样化仍然受到限制。我们在这里描述了多重的正交基础编辑器(MOBE),以及随机多重的SGRNA组装策略,以最大程度地提高基因多样化。bobe可以在不同的目标上诱导有效的正交安倍(<36.6%),CBE(<36.0%)和A&CBE(<37.6%),而SGRNA组装策略随机基础编辑各个目标上的基础编辑事件。与稻米乙酰辅酶A羧化酶(OSACC)的第34外显子的每个链中的130和84个靶标相应,我们观察到了随机双重双重和随机三重SGRNA库中的目标 - 折叠组合。我们使用MOBE和大米中的随机双重SGRNA文库进一步进行了OSACC的定向演变,并获得了更强的除草剂耐药性的单个或连接的突变。这些策略对于功能基因的原位定向演变很有用,并且可能会加速大米的性状改善。
摘要:基于 CRISPR-Cas 的技术彻底改变了分子生物学,成为基因组编辑领域具有无与伦比的精确度和多功能性的先驱工具。这引起了学生对探索 CRISPR 技术潜力的广泛兴趣。预计到 2032 年,全球基因编辑市场将超过 299.3 亿美元,预测期间的复合年增长率为 15.73%。随着基因编辑应用的扩大,对能够利用其功能实现各种有益目的的熟练专业人员的需求也在增加。未来基因编辑计划致力于实现联合国可持续发展目标 4,于 2020 年启动,主要目标是丰富从事研究的学生的经验和就业机会。这个不断发展的计划以以下为核心:第一阶段完全在线进行,重点关注 CRISPR 技术的基础知识,第二阶段采用基于实验室的方法,第三阶段为选定的学生提供研究实习。海报将讨论学生的参与度、影响以及在本科生-研究生-博士课程中学习前沿研究技术的经验。此外,还将讨论学生对该计划的影响的看法,这些影响不仅限于技术能力,还包括跨学科联系和社区参与方面的技能发展。随着学生探索不断扩大的科学视野,该计划强调了培养一代知识渊博的学生研究人员的重要性,他们致力于知识共享和负责任地应用基因组编辑工具。
摘要 基于 CRISPR 的定向进化是一种有效的育种生物技术,可改善植物的农艺性状。然而,使用单个单向导 RNA 其基因多样化仍然有限。我们在这里描述了一种多重正交碱基编辑器 (MoBE) 和一种随机多重 sgRNA 组装策略,以最大化基因多样化。MoBE 可以在不同的靶标上有效诱导正交 ABE (< 36.6%)、CBE (< 36.0%) 和 A&CBE (< 37.6%),而 sgRNA 组装策略将各种靶标上的碱基编辑事件随机化。对于水稻乙酰辅酶 A 羧化酶 (OsACC) 第 34 外显子的每一条链上的 130 个和 84 个靶标,我们在随机双 sgRNA 和随机三重 sgRNA 文库中观察到多达 27 294 种靶标-支架组合类型。我们进一步利用MoBE和随机双sgRNA文库对水稻中的OsACC进行了定向进化,获得了更强的除草剂抗性的单突变或连锁突变。这些策略可用于功能基因的原位定向进化,并可能加速水稻性状改良。