摘要 — 当前电网面临诸多挑战,因为缺乏有效的能源管理策略,无法将发电量与负荷需求相匹配。这个问题在微电网中变得更加明显,因为微电网的负荷变化明显,发电量主要来自可再生能源,因为它依赖于分布式能源的使用。建设智能微电网比将大型电网转变为智能电网更具经济可行性,因为智能微电网需要大量投资来用智能设备替换旧设备。本文在微电网的不同部分应用物联网 (IoT) 技术,以实现有效的物联网架构,并提出了资产互联网 (IoA) 概念,该概念能够将任何旧资产转变为智能物联网资产。这将允许所有资产有效地连接到基于云的物联网。其作用是对从智能微电网收集的数据进行计算和大数据分析,以向不同的控制器发送有效的能源管理和控制命令。然后,物联网云将发送控制操作来解决微电网的技术问题,例如通过设置预测模型解决能源不匹配问题,通过有效承诺 DER 来提高电能质量,以及通过仅关闭不必要的负载来消除负载削减,这样消费者就不会遭受停电之苦。还讨论了在微电网内各个部分使用物联网的好处。
11 与其他预防性治疗方案相比,降钙素基因相关肽单克隆抗体 (CGRP mAb) 在偏头痛管理中表现出良好的效果。目前,有多项研究涉及 CGRP mAb 在偏头痛管理中的有效性和耐受性。但是,在将抗体类别之间切换作为偏头痛患者的治疗选择时,仍有许多问题尚未解答。本研究旨在探索和评估先前使用其他 CGRP mAb 治疗失败的患者对 CGRP mAb 的治疗反应。18 这是一项回顾性、现实世界的探索性研究。研究对象为 19 名被诊断为偏头痛的成年 (≥18 岁) 患者。对使用两种或更多种 GCRP mAb 治疗的患者进行了回顾性分析。数据来自一个研究中心,53 名偏头痛患者由于最初处方的 CGRP mAb 疗效不佳而在三种 CGRP mAb 类型(Eptinezumab、Erenumab 和 Glacanezumb)之间切换。通过患者日记和临床记录中记录的 MMD 来评估在 CGRP mAb 类型之间切换的疗效。使用非参数分析比较每种处方药前六个月的疗效。疗效分析表明,两个类别切换队列(CGRP/R 到 CGRP/L 和 CGRP/L 到 CGRP/R)均有所改善。然而,处方切换疗效最显著的改善发生在在不同 CGRP/L 类药物之间切换的患者中。慢性偏头痛和发作性偏头痛患者的 MMD 均有所改善,但慢性偏头痛患者在横向 30 转换后表现出更高的疗效反应性,CGRP 类别之间转换的安全性得到了很好的观察,因为转换前出现的任何不良事件 31 都不会导致转换后停止治疗。 32 这项研究的结果表明,在不同类别的 CGRP mAb 之间转换是一种 33 潜在的安全且临床可行的做法,可能对那些在目前的 CGRP mAb 上出现副作用或反应不佳的患者有一定的应用价值。对于开始使用配体靶向 CGRP mAb 治疗并出现副作用或缺乏有意义的 36 疗效的患者来说尤其如此,因为配体-配体队列似乎显示出最好的结果。需要更大规模的队列研究和 37 更长时间的随访来验证我们的发现。 38 39 40 41 42
应将图 3、表 1 和表 2 一起审查,以帮助确定 DMHT 是否被视为具有医疗目的。例如,如果 DMHT 以“明确的运动心理表现目标”来“跟踪”健康数据并且没有推断出的医疗益处,则可以认为它正在执行欧盟 MDD 医疗器械定义中“监测”所涵盖的临床任务,但它不会被视为针对临床状况或症状,因此不会被视为具有医疗目的。相反,如果 DMHT 随着时间的推移“跟踪”“焦虑水平”,它将被视为正在执行欧盟 MDD 医疗器械定义中“监测”所涵盖的临床任务,并且它将被视为针对临床状况或症状,因此将被视为具有医疗目的。
RP-29系列配备了尖端的SF1和/或F1技术,可提高传输速率,从而使其兼容的PIR运动传感器摄像头可以捕获控制面板的高清图像。总体而言,RP-29系列提供了一个高级且可靠的解决方案,可有效扩展信号范围并到达房屋的遥远角落。
异步在线学习提供了灵活性和可访问性,但通常缺乏培养学生归属和参与度的人际关系。“属于异步课程”项目通过开发一个全面的帆布资源来解决这一差距,该帆布资源为讲师提供了实用工具,以创建包容性,以学生为中心的在线课程。这次专业演讲将使参与者浏览资源模块,其中包括可行的模板,最佳实践以及促进归属和改善学生成果的策略。资源的关键特征包括学前策略,以设定包容性的基调,“在此处开始”材料,以欢迎和指导学生,以及构建引人入胜的在线讨论和协作活动的技术。此外,资源强调了设计包容性课程内容的方法,以考虑各种学生需求并促进公平。简短的教学视频伴随着每个模块,以支持讲师无缝实施这些实践。通过培养一种归属感,该项目使教育工作者能够将异步课程转变为引人入胜,支持性学习环境,从而增强了学生的成功和教师的有效性。
执行摘要计划对结构化容量市场的可靠性和垂直集成的公用事业需要正式量化每个资源类别的可靠性贡献,以确保遵守可靠性标准。资源类别类别的可靠性贡献通常表示为其有效的承载能力(ELCC)。在诸如ERCOT之类的仅能市场中,尽管目前尚无能力认证计划,但仍然重要的是,市场参与者深入了解每个资源类别的可靠性贡献。ERCOT与PowerGem签约,进行了一项ELCC研究,以量化ERCOT报告中关于ERCOT地区(CDR)的能力,需求和储备的计划储备利润率(PRM)的贡献。使用ELCC方法的使用已在ERCOT的节点协议中进行了整理。1
引言百日咳是由百日草细菌引起的高度传染性呼吸道感染。百日咳病例倾向于在美国每3 - 5年每3 - 5年每3至5年达到高峰。在广泛的疫苗接种之前,每年在美国儿童中造成超过200,000例和9,000例死亡。1在COVID-19大流行期间的百日咳案例较低后,百日咳的发生率在2024年在阿拉斯加和全国范围内大幅增加。2,3这种活动激增引起了有关TDAP和DTAP疫苗功效的问题。本评估的目的是评估2024年阿拉斯加儿童的细胞全世界疫苗的现实世界有效性。方法我们进行了基于人群的病例对照分析,以评估收到收到百日咳疫苗(即DTAP和/或TDAP)与2024年百日咳疾病的风险之间的关联。案件包括在2024年5月1日至11月30日在阿拉斯加报告的2个月至17岁的儿童中所有首次实验室确认的百日咳病例。对照是从同一年龄的儿童的测试报告中随机选择的,他们在分析期间与相应的百日咳病例相同的医疗机构进行了呼吸道病毒病原体的测试,但尚无已知的当前或事先诊断百日咳。对于每种情况,我们随机选择了按年龄(年龄)和医疗机构匹配的三个控件。通过与阿拉斯加的免疫信息系统vactrak联系,评估了每个孩子的疫苗状况。确定每个孩子收到的DTAP/TDAP剂量的总数。儿童被归类为完全疫苗接种(或“最新”),如果他们的vactrak记录显示出dtap和tdap剂量,与标本收集时的ACIP年龄特定建议一致。记录的未记录剂量的人被归类为未接种剂,而那些剂量但未最新的人被归类为部分接种疫苗。为了确保准确的儿童疫苗接种数据,该分析仅限于阿拉斯加出生的儿童。在试样收集前2周内给药的剂量被排除在总剂量计数之外,因为时间不足无法实现免疫反应。病例和对照五个以上记录的DTAP剂量或百日咳病史被排除在分析之外。为了估计疫苗接种与百日咳诊断之间的关联,我们使用条件逻辑回归来计算优势比,这是对匹配因素(设施和出生年)的解释。疫苗有效性(VE)计算为:1-优势比×100%。回归模型已针对种族和日历月进行调整,并通过匹配的设计控制了年龄和医疗机构。未接种疫苗的儿童在所有模型中都是参考组。标准错误已调整以说明设施的聚类。最终分析中包括了来自阿拉斯加17个医疗机构的120例病例和344个对照。病例比对照组更有可能未接种疫苗(43.8%[n = 52] vs. 9.3%[n = 32]; p <.001),并且不太可能被完全疫苗接种(42.5%[n = 51] vs. 71.2%[n = 245]; p <.001)(表1)。与接受特定年龄特异性的百日咳疫苗剂量(95%CI:7.6-24.7)相比,未接种的儿童收缩百日咳的可能性高13倍。在完全疫苗接种的儿童中,针对百日咳的疫苗有效性为92.7%(95%CI:86.8% - 95.9%)(表2)。曾接受过接百日咳疫苗但尚未完全疫苗接种的儿童
1位艾格纳(Ognaj)Akar物理治疗学院的助理教授。2副校长兼高级讲师在艾哈迈达巴德Ranip的Shree Swaminarayan物理治疗学院。摘要背景:帕金森氏病(PD)是中枢神经系统的进行性疾病。步态障碍是PD的常见和早期特征,是功能依赖,跌倒和死亡的主要原因。约有50%的帕金森患者患有步态(FOG)。替代步态康复技术,包括视觉,听觉和触觉刺激的这种外部感觉提示最近受到了很多关注。研究的目的:研究视觉提示和听觉线索对帕金森氏病个体步态参数的有效性。方法论:选择了30名受试者进行研究。受试者被随机分配为两组。组1:听觉提示第2组:视觉提示,1次/天,5天/周,4周和20-30分钟步态训练。两组接受传统的物理疗法20-30分钟。动态脚印,速度,节奏和tinetti性能的迁移率评估测试(POMA-G)作为结果指标,并在干预前和4周结束前进行检查。结果:结果表明,在小组分析中,步骤长,步长,速度和POMA -G的统计学显着差异,但两组的节奏均无差异(P值<0.05)。关键字:帕金森氏病,步态疾病,步态障碍,步态训练,步态康复,听觉提示,视觉提示。显示POMA -G的统计学显着改善(P值<0.05),但在步长,步长长度,节奏和速度(p -value˃0.05)中不显示。结论:结果显示出听觉提示和视觉提示组的改善,但是在组分析的步态参数之间没有显着差异,即步长,步幅长度,节奏,速度和POMA-G。这表明这两种干预措施都是有益的,可以轻松地用于临床实践中,对于那些在治疗师和患者最低成本方面遇到困难的患者。引言中枢神经系统的进行性神经退行性疾病称为帕金森氏病(PD)。(1)通常在病理上通过Lewy身体和Nigra中的神经元丧失以及运动表型在临床上鉴定。(2)在60岁以上的每100个人中影响2个,
摘要 - 本文着重于评估所选工具以检测DeepFake视频,该视频对数字信息的完整性和在线媒体的可信度构成了日益严重的威胁。随着人工智能越来越多地创建高度逼真的操纵内容,对健壮检测系统的需求不仅在数字取证中很重要,而且在更广泛的信息安全和媒体验证领域也很重要。这项研究提供了对五种DeepFake检测工具的比较分析,其中包括三种开源工具(SBI,LSDA,LIPINC)和两种商业解决方案(Bio-ID,Deepware),这些数据集在Celeb-DF(V2)的300个操纵视频的数据集上进行了测试。结果表明,商业工具的性能更好,生物ID的检测准确性为98.00%,而Deepware 93.47%的检测准确性优于开源替代方案。
1 Inserm umr-s1131,de de de de de de la recherche Saint-Louis大学,援助Publique-hôpitauxde Paris(AP-HP),h [Pital-Pital Saint-Louis hortial portial,法国75010 PARICAL; petra.gorombei@gmail.com(P.G.); fabien.guidez@inserm.fr(F.G.); saravanan.mgtian@gmail.com(S.G.); mathieu.c@live.fr(M.C.); laure.goursaud@inserm.fr(l.g。); tekinnilgun@gmail.com(n.t。); stephanie.beurlet@free.fr(S.B.); patelsatyananda@gmail.com(S.P.); lguerenne@gmail.com(l.g。); clp_5@hotmail.com(c.l.p.); marika.pla@inserm.fr(M.P.); patricia.krief@inserm.fr(p.k.); Christine.Chomienne@inserm.fr(C.C.)2血癌英国分子血液学单位,牛津大学Radcliffe医学系NUF领域,临床实验室科学系和BRC血液学主题,牛津Ox3 9du,英国; andreapellagatti@yahoo.co.uk(a.p.); jacqueline.boultwood@ndcls.ox.ac.uk(J.B。)3 Imageriedépartement,Paris Universitionéde de de la Recherche Saint-Louis,法国75010,法国巴黎; niclas.setterblad@univ-paris-diderot.fr 4 Genosplice Technology,Paris BiotechSanté,29 Rue du Faubourg Saint-Jacques,法国75014; Pierre.delagrange@genosplice.com 5 Inserm umr-s942,埃德巴黎大学,援助Publique-hôpitauxde Paris(AP-HP),HTICE PITAL SAINT-LOUIS,75010 PARES,法国巴黎,法国; Christophe.leboeuf@univ-paris-diderot.fr(C.L.); Anne.janin@yahoo.fr(A.J.)); mandreef@mdanderson.org(M.A。)12加的夫大学医学院血液学系,加的夫CF14 4XN,英国; omidvarn@cf.ac.uk *通信:rose-ann.padua@inserm.fr;电话。12加的夫大学医学院血液学系,加的夫CF14 4XN,英国; omidvarn@cf.ac.uk *通信:rose-ann.padua@inserm.fr;电话。6公共援助 - 巴黎Pitales de Paris(AP-HP)的细胞学系,法国75010 Pital Saint-Louis; Maria-elena.noguera@aphp.fr 7 Radiopharmacy AP-HP,H pital Saint-Louis,服务医学核,AP-HP Lariboisiere,75010 Paris,法国,法国; laure.sarda@inserm.fr 8核医学,公共援助 - 巴黎Pitales de Paris(AP-HP),H pital Saint-Louis,75010 Paris,Paris,Paris; pascal.merlet@aphp.fr 9 M. D. Anderson癌症中心,德克萨斯大学,美国德克萨斯州77030,美国; mkonople@mdanderson.org(M.K。10公共卫生系,加的夫大学医学院,加的夫CF14 4XN,英国; westrr@cardiff.ac.uk 11 Inserm umr-s944,巴黎大学,de la recherche Saint-Louis研究所,公共援助 - 巴黎Pitales de Paris(AP-HP),H。Pitality Saint-Louis,75010 Paris,Paris,法国; lionel.ades@aphp.fr(L.A.); Pierre.fenaux@aphp.fr(P.F.): +33-1-57-27-90-22;传真: +33-1-57-27-90-13†相等的贡献。