Eikonal方程已成为准确有效地对心脏电活激活进行建模的必不可少的工具。原则上,通过匹配临床记录和核心心电图(ECG)的匹配,可以纯粹的非侵入性方式构建患者特异性心脏生理学模型。尽管如此,拟合程序仍然是一项具有挑战性的任务。本研究介绍了一种新的方法,即测量BP,以解决逆向敌军问题。Geodesic-BP非常适合GPU加速机器学习框架 - 使我们能够优化Eikonal方程的参数以重现给定的ECG。我们表明,即使在存在建模不准确的情况下,Geodesic-BP也可以在合成测试案例中以高精度重建模拟的心脏激活。fur-hoverore,我们将算法应用于双心脑兔模型的公开数据集,并具有令人鼓舞的结果。鉴于未来向个性化医学的转变,Geodesic-BP具有帮助未来功能的心脏模型的功能 - 符合临床时间段落的同时保持最先进的心脏模型的生理准确性。
摘要 - Eikonal方程已成为一种不可或缺的工具,用于对心脏电动激活进行巧妙和有效地建模。原则上,通过匹配临床记录和基于艾科尼尔的心电图(ECG),可以以纯粹的非侵入性方式构建心脏电子生理学的患者特异性模型。否则,拟合过程仍然是一项具有挑战性的任务。本研究介绍了一种新的方法,即测量BP,以解决逆向艾科尼尔问题。Geodesic-BP非常适合GPU加速机器学习框架,从而使我们能够优化Eikonal方程的参数以复制给定的ECG。我们表明,即使在存在建模不准确的情况下,Geodesic-BP也可以在合成测试案例中以高精度重建模拟的心脏激活。此外,我们将al-gorithm应用于双室兔模型的公开数据集,并具有令人鼓舞的结果。鉴于未来向个性化医学的转变,Geodesic-BP具有帮助心脏模型的未来功能化,同时保持临床时间的限制,同时保持先进心脏模型的生理准确性。
E. Lage 埃因霍温理工大学 C. Portilla 埃因霍温理工大学 J. Espinosa Universidad Nacional de Columbia E. Lage TuA08-3 15.40-16.00 基于可见性的行进方法:路径 Eikonal 方程的精确解笛卡尔网格规划。。。。。。。。。。。。。。。。。。。72
以视觉为中心的3D环境理解既是VILA的,又对自动驾驶系统充满挑战。依据,无对象的方法吸引了相当大的意义。通过预测离散体素电网的语义,但无法构建连续,准确的障碍物表面,就可以感知世界。为此,在本文中,我们提议围绕着axtingsdf,以隐式预测周围图像的连续感知的签名距离场(SDF)和语义场。具体来说,我们介绍了一种基于查询的方法,并利用了由Eikonal配方构成的SDF来准确描述障碍物的表面。此外,考虑到缺乏精确的SDF地面真相,我们提出了一个新颖的SDF监督范式,被称为三明治艾科尼尔配方,强调在表面的两边都适用于正确且密集的约束,从而增强了表面上的精度。实验表明,我们的方法可以在Nuscenes数据集上用于占用预测和3D场景重建任务的SOTA。
摘要。精准心脏病学数字孪生的愿景是将专家知识和患者心脏病理生理数据与先进的计算方法相结合,以生成准确、个性化的治疗策略。在研究心脏电生理学时,孪生管道通常需要大量模拟,例如在探索个性化参数空间时或在大数据研究中扩展到大量虚拟患者时。在这些情况下,最先进的方法在计算上是昂贵的,即使应用相对较快的算法(例如 Eikonal 模型)。在这项工作中,我们研究了基于 U-Net 的模型在整个人体心室内电激发的性能。该方法通过在标准化的三维空间中表示心脏的解剖和电生理特性,提供了减少输入参数空间的优势。结果表明,该模型能够模拟 Eikonal 模拟方案并预测心脏激活时间图,平均准确度为 4.7ms RMSE,预测点性能有所提高,结果速度提高了 500 倍。这种新方法为大量人体心脏模型中个性化心脏传播模拟提供了有希望的结果。
我们研究抗 - de Seitter(ADS)黑色壳(也称为Ads Black Bubbles)的电磁和重力特性 - 一类量子重力动机的黑洞模拟物,在经典限制中被描述为物质的超级壳壳。我们发现它们的电磁特性与黑洞非常相似。然后,我们讨论这些物体与黑洞可区分的程度,包括黑色壳模型内的内在兴趣,以及作为外来紧凑型物体(ECOS)其他类似努力的指南。我们研究光子环和透镜带特性,与非常大的基线干涉法(VLBI)观测值有关,以及引力波可观测值 - Eikonal极限中的准模式和非静态潮汐壳的静态潮汐壳(与正在进行和即将来临的Gravitation Gravitation Waver toughational Wave观测)相关。
摘要:我们提出了一种非侵入性识别心脏异位激活的方法。异位活动会触发致命的心律不齐。因此,异位灶或最早激活位点(EAS)的定位是心脏病专家决定最佳治疗方面的关键信息。在这项工作中,我们通过最大程度地减少心脏模型预测的ECG之间的不匹配(在给定的EAS上的节奏),而在异位活动期间观察到的ECG来最大程度地降低心脏模型预测的ECG之间的不匹配,从而提出识别问题作为全局优化问题。我们的心脏模型在求解躯干中的心脏激活和正向bidomain模型的各向异性核心方程方面的量具有用于计算ECG的铅方法方法。我们在心脏表面上构建了损失函数的高斯过程替代模型,以执行贝叶斯优化。在此过程中,我们迭代评估较低的置信结合标准后的损失函数,该标准结合了探索表面与最小区域的开发。我们还扩展了此框架以结合模型的多个级别。我们表明我们的过程仅在11后收敛到最低。7±10。4迭代(20个独立运行),用于单项实现案例和3个。5±1。7迭代次数。我们设想可以在临床环境中实时应用此工具,以识别潜在危险的EAS。
摘要:考虑数据可靠性,用于相位不连续性重构的对偶残差优化连接提供了更可靠的方案并产生了更稳健的解缠结果。然而,它们的实际实现通常涉及耗时的迭代全局操作,不适合应用于大块干涉合成孔径雷达(InSAR)相位数据的相位解缠(PU)。提出了一种基于局部最小可靠性对偶扩展的并行PU方法。在给定质量权重图的情况下,基于残差定义对偶可靠性,并引入最小可靠性残差对来表示可能的不连续边界。我们提供了一种具有局部最小可靠性搜索和对偶合并的对偶动态扩展方法。最终获得的最小平衡树用于在可靠性图的帮助下对PU进行路径集成。可靠性图的计算、残差对搜索和动态扩展被设计为并行进行。我们采用基于艾科纳方程和洪水填充的界面传播方案进行并行实现。采用所提方法处理了两大块机载 InSAR 数据,实验结果和分析验证了该方法对大规模 PU 问题的鲁棒性和有效性。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。分发或复制