传统的强化学习 (RL) 策略通常以固定的控制率实施,通常忽略控制率选择的影响。这可能导致效率低下,因为最佳控制率会随任务要求而变化。我们提出了多目标软弹性演员评论家 (MOSEAC),这是一种使用弹性时间步骤动态调整控制频率的离策略演员评论家算法。该技术通过选择最低可行频率来最大限度地减少计算资源。我们证明 MOSEAC 在理论层面上收敛并产生稳定的策略,并在实时 3D 赛车游戏中验证了我们的发现。在能源效率和任务有效性方面,MOSEAC 明显优于其他可变时间步骤方法。此外,MOSEAC 表现出更快、更稳定的训练,展示了其在机器人技术中用于现实世界 RL 应用的潜力。
大道,营养和饮食学摘要大脑是杰作,通常称为国王器官,因为它控制了整个身体。当大脑停止发挥作用时,它标志着个人活力的终结,从本质上讲,它们使他们成为“蔬菜”。这种深刻的重要性提出了一个至关重要的问题:我们是否充分养育和照顾我们的大脑?在当今快节奏的世界中,人类经常使大脑承受不懈的压力和负面冲动,从而导致认知能力下降。但是,通过采用特定的日常习惯,可以非常简单地增强大脑弹性。这些习惯不仅宠爱大脑,而且使其更加清晰,更强壮。促进大脑容量的关键因素包括保持最佳水合,从事智商增强的非数字游戏,例如国际象棋和拼字游戏,解决逻辑数学问题,定期锻炼和冥想。此外,将水果和蔬菜纳入饮食中,食用富含omega-3和DHA的食物,确保睡眠8个小时,减少屏幕时间,学习新语言,演奏各种乐器以及促进积极而有力的心态。一个至关重要但经常被忽视的习惯是定期阅读。阅读可以刺激大脑,提高浓度,增强词汇,并促进对各种受试者的更深入的了解,所有这些受试者都有助于提高认知灵活性和大脑弹性。另一个重要因素是保持良好的肠道健康。最近的研究表明,良好的肠道细菌在增加大脑活动中起着至关重要的作用。肠道轴是一个复杂的通信网络,连接肠道和大脑,从而使肠道细菌能够影响认知功能。益生菌和富含纤维的饮食可以增强肠道菌群的多样性和健康,从而改善大脑功能和心理健康。本评论探讨了这些生活方式实践如何有助于认知增强,并可能将普通人转变为天才。认为天才不是固有的特征,而是故意和一致的心理参与和培养的结果。通过拥抱这些策略,包括定期阅读和保持良好肠健康的习惯,个人可以显着提高其认知能力并实现出色的智力增长。关键字:神经塑性,认知增强,脑部健康的饮食,运动,冥想阳性心态和肠道轴介绍大脑,通常被称为人体中最重要的器官,是所有身体功能和活动的指挥中心(Maldonado&&Alsayouri,2019年)。其连续有效的操作对生活至关重要,任何重大的损害都会导致营养的存在状态,强调其关键
通过连续体(BICS)中的结合状态构建高度局部的波场,可促进增强的波浪互动,并为高灵敏设备提供方法。弹性波可以携带复杂的极化,因此与BIC形成中的电磁波和其他标量机械波的不同,尚未充分探索和利用。在这里,我们报告了对羔羊波导侧支支撑的局部共振模式的研究,该模式由两对共振支柱支撑,并显示了两组具有不同极化或对称性的弹性BIC的出现。,两组BIC对外部扰动表现出明显的反应,基于该反应,提出了具有增强敏感性的无标签感应方案。我们的研究揭示了弹性介质中复杂的波动力学引起的BIC的丰富特性,并证明了它们在传感和检测中的独特功能。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年3月13日发布。 https://doi.org/10.1101/2024.03.08.584195 doi:Biorxiv Preprint
1深圳先进技术研究所,中国科学院,深圳518055,中国2深圳先进技术学院,中国科学院科学院,北京大学100049,中国3号,3月3日中国 *通讯作者:Hongyan Wu(hy.wu@siat.ac.cn)摘要:持续学习,模型随着时间的流逝而不必忘记以前的知识,因此对新数据的适应性,在疾病爆发预测等动态领域中至关重要。深神经网络,即LSTM,由于灾难性遗忘而容易出错。这项研究引入了一种新型的CEL模型,用于通过通过弹性重量巩固(EWC)利用域的适应性来进行持续学习。该模型旨在减轻域增量设置中的灾难性遗忘现象。使用EWC构建Fisher Information Matrix(FIM),以开发正规化术语,该术语对重要参数的变化进行了惩罚,即重要的先前知识。CEL的表现通过不同的指标评估了三种不同的疾病,流感,MPOX和麻疹。在评估和重新评估期间,高R平方值在几种情况下优于其他最新模型,表明CEL可以很好地适应增量数据。cel的鲁棒性和可靠性受到其最小的65%遗忘率和更高的记忆稳定性的强调。它提供了一个有价值的模型,可以通过准确,及时的预测进行主动疾病控制。这项研究强调了CEL在疾病爆发预测中的多功能性,以时间模式解决了不断发展的数据。
2024 年 2 月 16 日至 17 日 由印度科学技术部牵头、与贾瓦哈拉尔·尼赫鲁高级科学研究中心 (JNCASR) 合作的纳米任务计划与英国科学技术设施委员会 (STFC) 签署了一项协议。此次合作旨在促进英国和印度科学家在中子散射和介子光谱方面的共同努力。重点将放在利用 ISIS 卢瑟福阿普尔顿实验室 (RAL) 的实验设施进行纳米技术和先进材料研究。有关更多详细信息,请访问我们的网站。
主动脉僵硬和动脉粥样硬化之间的可能联系机制包括常见的危险因素、动脉壁的机械应力、动脉应激、动脉动力学、血管重塑和内皮修复机制受损。2 高血压、糖尿病、血脂异常和吸烟是主动脉僵硬和动脉粥样硬化的危险因素,它们会诱发这两种疾病,并导致内皮功能障碍、氧化应激和慢性炎症。随着主动脉僵硬的增加,它会对内皮施加机械压力,损害其功能,增加炎症并导致斑块形成。3 主动脉僵硬导致的血流动力学改变会升高血压和脉搏波速度,从而加速小血管中的动脉粥样硬化过程。4 动脉僵硬还会诱导血管重塑,刺激平滑肌细胞增殖、胶原沉积和结构变化,从而促进斑块形成和主动脉僵硬。 2,5 此外,主动脉僵硬还会通过降低内皮祖细胞的动员能力和削弱修复能力来影响内皮祖细胞。6 了解这些机制,重点在于将主动脉僵硬视为预防和控制动脉粥样硬化的一个可改变的危险因素。除动脉粥样硬化外,其他心血管事件也据报道受到动脉僵硬的影响。研究表明,患有心力衰竭、二尖瓣主动脉瓣和心房颤动等疾病的患者会出现主动脉弹性受损。7–9
金属电极诱导的晶格应变会损害用电子或孔自旋运行的高级量子设备的功能。在这里,我们通过nanobeam扫描X射线di效果显微镜很好地研究了由埋入10 nm厚的SI / SI 0.66 GE 0.34量子孔的晶状体上的CMOS制造钛电极引起的变形。我们能够测量2-8×10-4范围内的锡电极诱导的应变张量成分的局部调制,并具有约60 nm的横向分辨率。我们评估这些应变流动在局部调制中反映在SI传导带的最小值大于2 MeV的电势中,该电池的最小值大于2 MeV,该调制带接近静电量子点的轨道能。我们观察到,在量子孔层的给定深度处应变调制的符号取决于电极的横向尺寸。由于我们的工作探讨了设备几何形状对应变诱导的能量景观的影响,因此它可以进一步优化缩放CMOS加工的量子设备的设计。
摘要 脑电图 (EEG) 因其出色的时间分辨率和较差的空间分辨率而被应用于情绪识别。这导致大多数基于 EEG 的情绪识别模型强调利用时间特征而忽略了空间分辨率提供的有效信息。为了提取更具信息量的表示,我们提出了一种用于情绪识别的弹性图 Transformer 网络 (EmoGT),其灵感来自 Transformer 在时间序列分析方面的优势和图卷积网络在拓扑分析中的卓越性能。此外,通过采用专门设计的结构,它可以灵活扩展以应对多模态输入。在 3 个公共数据集上的实验结果表明,我们的模型在单模态和多模态情况下平均比最新结果高出 3%,表明了同时利用时间和空间信息的有效性。