图 2-9:2022 年净头寸(不含 McNeil)......................................................................................................................... 65 图 2-10:2022 年净头寸......................................................................................................................................... 65 图 2-11:BED 的容量义务和发电资源提供的容量 ......................................................................................... 66 图 2-12:截至 2023 年 6 月的 BED Tier 1 要求和合格资源 ............................................................................. 67 图 2-13:截至 2023 年 6 月的 BED Tier 2 要求和合格资源 ............................................................................. 68 图 2-14:截至 2023 年 6 月的 BED Tier 3 要求和合格资源 ............................................................................. 69 图 2-15:资源比较 ......................................................................................................................................... 98 图 3-1:BED 历史年度峰值/最小负荷 ............................................................................................................. 100 图 3-2:系统损耗 ................................................................................................................................................ 103 图 3-3:变压器负荷报告示例 ...................................................................................................................... 108 图 3-4:伯灵顿历史 SAIFI 值 ...................................................................................................................... 112 图 3-5:伯灵顿历史 CAIDI 值 ...................................................................................................................... 112 图 3-6:伯灵顿历史动物接触停电次数 ...................................................................................................... 116 图 4-1:伯灵顿 1960-2022 年的总能源使用量 ............................................................................................. 131 图 4-2:2015-2022 年能源效率年度 MWh 节省量和第一年能源节省成本 ............................................................................................................. 133 图 4-3:2015-2022 年按主要最终用途划分的能源效率 MWh 节省量 ............................................................................................................. 135 图 4-4:EEU 资源收购预算预测,2024 年至 2043 年 .............................................................................. 135 图 4-5:EEU 年度增量 MWh 节省量实际值和预测值,2012 年至 2043 年 ........................................................ 136 图 4-6:EEU 累计 MWh 节省量预测,经通胀调整,2024 年至 2043 年 ........................................................ 137 图 4-7:预测商业 EEU MWh 节省量(按最终用途),2024 年至 2043 年 ........................................................ 137 图 4-8:预测住宅 EEU MWh 节省量(调整后),2024 年至 2043 年 ........................................................ 138 图 4-9:预测 EEU 第一年节省能源成本(调整后),2024 年至 2043 年 ............................................................. 139 图 4-10:2017 年至 2032 年 Tier III 计划实际活动和预测活动......................................................................................... 140 图 4-11:按计划区域划分的年度 Tier III 激励措施......................................................................................................... 142 图 4-12:2017 年至 2022 年电动汽车 Tier III 激励措施......................................................................................................... 146 图 4-13:预计电动汽车激励措施——低、基准和高情况......................................................................................................... 147 图 4-14:预测的电池供电轻型汽车的 MWh 销售量与总 MWh 销售量的比较............................................................................................................................. 148 图 4-15:家庭电动汽车充电负荷概况与公共/工作场所电动汽车充电负荷概况 ............................................................................................. 149 图 4-16:预计电动汽车累计温室气体减排量部署,2020-2042 年 ...................................................................................................................... 150 图 4-17:电动汽车客户成本测试结果 ...................................................................................................................... 152 图 4-18:电动汽车公用事业成本测试结果 ...................................................................................................................... 153 图 4-19:电动汽车社会成本测试结果 ...................................................................................................................... 154 图 4-20:预计电动公交车兆瓦时销售量,2020-2042 年 ...................................................................................................... 155 图 4-21:GMT 电动公交车充电概况,2022 年 8 月 ...................................................................................................... 156 图 4-22:预计电动公交车部署带来的温室气体减排量 ............................................................................................. 157 图 4-23:电动公交车客户影响测试结果 ................................................................................................................ 158 图 4-24:电动公交车公用事业成本测试结果........................................................................................................... 159 图 4-25:电动公交车社会成本测试结果................................................................................................................... 160 图 4-26:2014 年至 2022 年 BED 自有 EVSE 兆瓦时销量和用户数量......................................................................... 161 图 4-27:2020 年至 2042 年工作场所 EVSE 充电销量......................................................................................... 163 图 4-28:2 级工作场所 EVSE 客户影响测试结果......................................................................................... 164 图 4-29:2 级工作场所 EVSE 公用事业成本测试结果..................................................................................... 165 图 4-30:2 级工作场所 EVSE 社会成本测试结果 ............................................................................................. 165 图 4-31:伯灵顿热泵累计安装量,2017 年至 2022 年 .............................................................................. 166 图 4-32:预计住宅热泵安装数量(累计),2022 年至 2042 年 ...................................................................... 167 图 4-33:预计热泵 MWh 销售量(仅供暖),2022 年至 2042 年 ............................................................................. 168 图 4-34:典型的寒冷气候热泵负荷曲线 ............................................................................................. 169 图 4-35:预计热泵部署带来的累计温室气体减排量,2020 年至 2042 年
This estimated average Price per kWh disclosure is an example and is calculated using: (i) a Fixed Energy Charge of 4.40¢ per kWh, (ii) the applicable Transmission and Distribution Service Provider ("TDU") tariff as established by the Public Utility Commission of Texas ("PUCT"), (iii) a monthly Base Charge per ESI-ID of $0.00 (NOTE: A Minimum Usage Fee of $ 0 will apply if usage is less than or equal在计费期内为999 kWh),以及(iv)所有反复费用。此平均价格披露不包括适用的联邦,州和地方税或任何费用(包括总收入税收报销)或由星座或政府实体收取的其他非续签金额。您的实际电力价格可能会根据您的每月使用情况和TDU通过费用而有所不同。某些地点可能受到TDU地下设施的约束,并由其城市授权的成本回收指控不包括在此平均价格披露中。请参阅您的TDU的关税,以获取城市清单和授权费用。
石墨烯是在二维蜂窝晶格中排列的单层碳原子,由于其出色的热和电性能,引起了人们的重大关注。其高热电导率(约5000 W/m·K)实现有效的散热,使其成为增强电子设备中热管理的理想材料。石墨烯有效地进行热的能力在各种应用中都利用,包括散布器,热界面材料和复合材料,改善了电子产品(例如处理器和LED)的性能和可靠性。除了其热益处外,石墨烯还具有非凡的电导率,电子迁移率达到200,000cm²/v·s。这种特殊的电导率是由于该材料的DELACALIGETINACTRAIGEDI-π电子和最小散射,从而显着增强了电子成分的性能。石墨烯用于导电油墨,晶体管,超级电容器和电池,推动柔性电子,高速晶体管和能量存储技术的进步。尽管有优势,但仍在大规模生产和将石墨烯集成到现有技术中的挑战。需要解决与生产成本,材料质量以及与其他物质兼容性相关的问题。正在进行的研究重点是改善合成技术和探索新的应用,并有望在各个行业中产生变革性的影响。简介石墨烯的优质热和电气性能可在热耗散和电子性能方面进行实质性改进,并可能扩大其应用并增强技术创新。
4.1税收足够....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ................................................................................................................................................................... 18 4.2.2能源和ESS市场收入的不确定性............................................................................................... ensuring revenue sufficiency .................................................. 21 4.3.1 Efficient pricing for services and investment ............................................................... 21
电力市场受到两步过程的影响(剩余负荷分布更广泛,然后是可调度电源的优先顺序更严格)。随着时间的推移,这些因素会导致价格波动加剧。但在第一阶段
金属 - 绝缘子 - 金属(MIM)电容器对于集成电路(ICS)至关重要。它们可以通过多种方式使用,例如解耦和过滤。高电容密度,低泄漏电流和小二次电压系数(a)是MIM电容器良好电性能的信号。为了获得高电容密度,可以使用高介电常数(K)材料,例如TA 2 O 5,HFO 2,Al 2 O 3,TiO 2和ZRO 2 [1-4]。Zro 2薄膜被认为是这些高k材料中的强大候选者,可以替代传统的介电材料SIO 2和SI 3 N 4,因为它具有许多优势,例如,高击穿电场,高介电结构和较大的能隙宽度[4]。有人研究了单个ZRO 2电介质MIM电容器,并获得了高电容密度,但是泄漏电流和值很差[5]。在这里,我们介绍了Al 2 O 3和SiO 2层以改进上述两个参数,因为Al 2 O 3的较大带隙为8.8 eV,SIO 2的较大频带差距为负值,因此Al 2 O 3 /Zro 2 /Zro 2 /Zro 2 /Zro 2 /Zro 2 /Zro 2 /Al 2 O 3(Azsza)结构MIM Capicitors设计了。需要强调的是,AZSZA结构是在相同的原子层沉积(ALD)系统中制备的。这不仅降低了实验的复杂性和成本,还降低了污染和引入杂质的可能性。因此,这是一种在
本报告仅供参考和教育之用。CEF 不提供税务、法律、投资或会计建议。本报告无意提供税务、法律、投资或会计建议,也不应依赖这些建议。本报告中的任何内容均不作为投资建议、买卖要约或要约邀请,或作为对任何证券、公司或基金的推荐、认可或赞助。CEF 对您做出的任何投资决定概不负责。您应对自己的投资研究和投资决定负责。本报告并非投资的一般指南,也不是任何特定投资建议的来源。除非归因于他人,否则所表达的任何意见仅是我们当前的意见。所提供的某些信息可能由第三方提供。CEF 认为此类第三方信息可靠,并已检查公共记录以尽可能验证它,但不保证其准确性、及时性或完整性;并且它可能会随时更改,恕不另行通知。
小型业余海军卫星 (PANSAT):(1) 太阳能电池阵列;(2) 电源调节和控制子系统 (PCCS);(3) 电池。本论文的重点是分析太阳能电池阵列的输出性能。此外,还研究了为 EPS 提出的混合 PCCS 的推导,并讨论了使用镍镉电池作为辅助电源的候选方案。对太阳能电池阵列输出性能的研究导致了 PANSAM(PANSAT 太阳能电池阵列模型),这是一种模拟太阳能电池阵列功率输出的计算机模型。用户可以指定太阳的赤纬、轨道的倾角以及卫星绕其三个轴的方向和旋转速度。模拟完成后,PANSAM 会提供太阳照射的有效表面积以及输出电流和功率。PANSAM 确定的平均有效面积比 PANSAT 工作人员最初提出的 1259 cm2 少 17.6%。这导致预测功率大幅降低。A. 还对 PANSAT 进行了初步瞬态热分析,为 PANSAM 提供了温度数据。
由 SJVN 有限公司执行的喜马偕尔邦 Dhaulasidh 水电项目 (2x33 = 66 MW) 的参观报告。CEA HPA 部门 II 助理主任 Shri Vontela Aravind Reddy 于 2022 年 3 月 4 日至 5 日参观了由 SJVN 有限公司执行的喜马偕尔邦 Dhaulasidh 水电项目 (2x33=66 MW),以审查项目各项工作的实际进展情况。与官员/工程师讨论了正在进行的工作的各个方面、问题区域以及为加快工作进度而采取的措施,目的是按计划及时投入使用项目。访问期间观察到的工作状态和关键区域/活动如下: 1.0 项目详情 拟建的 Dhaulasidh 水电项目 (DSHEP) 位于喜马偕尔邦的 Hamirpur 和 Kangra 区,由 SJVN 有限公司执行。该项目设计为比亚斯河上的径流式项目,设有小型实时蓄水设施,可在淡水季节提供峰值电力。该项目利用 46.37 米的总水头(45.33 米的净水头),在 90% 的可靠年份发电 304 MU,装机容量为 66MW。GoHP 通过 2008 年 6 月 28 日的信函将 Dhaulasidh HEP 分配给 SJVN 进行调查和后续开发。Dhaulasidh HEP 的 DPR 已从能源局、GoHP 通过 2011 年 6 月 25 日的信函(附于附录 I)获得技术经济同意 (TEC),费用为 497.67 千万卢比(包括 IDC 和 FC),2010 年 9 月 PL 以 SJVN 有限公司为受益人。政府批准了 Dhaulasidh HE 项目。印度政府于 2020 年 10 月 1 日批准了该项目(见附录 II),金额为 687.97 亿卢比,其中包括项目成本 666.32 亿卢比(2020 年 5 月 PL)和印度政府为建设基础设施提供预算支持 21.65 亿卢比,建设期为 54 个月。成本详情如下: