目标:评估三单元固定局部假牙(FPD)的断裂强度和线性伸长,并在老龄化之前和之后用传统和新材料制造,用于固定假肢。方法:制造了六十个三单元FPD的模型,并将固定在模拟上颌第二前磨牙的替换的CO-CR模型上。将样品随机分为3组:金属 - 陶瓷(MCR),掺杂石墨烯的聚甲基丙烯酸酯(PMMA-GR)和聚甲基丙烯酸丙烯酸酯(PMMA)。一半的样品直接进行断裂测试,而其余的一半进行了老化过程,然后使用电动力测试机进行断裂载荷测试。骨折负荷和断裂值处的伸长率进行了统计分析。结果:在不同材料之间检测到显着差异(P <0.05)。所有组均显示出衰老后的断裂负荷和伸长率的减少,但除了pMMA组(p = 2.012e-19)(p = 3.8e-11)外,但没有统计学意义。结论:与PMMA相比,MCR和PMMA-GR三单元FPD显示出更高的断裂强度和较低的断裂伸长率。与PMMA相比, MCR和PMMA GR对衰老过程的抗性更高。 临床意义:PMMA-GR可以被认为是长期临时修复体的材料,因为其ME Chanical行为和耐老化的耐药性更像MCR,而不是PMMA。MCR和PMMA GR对衰老过程的抗性更高。临床意义:PMMA-GR可以被认为是长期临时修复体的材料,因为其ME Chanical行为和耐老化的耐药性更像MCR,而不是PMMA。
(24)中与变形换向器有关的物理理论的构建具有悠久而丰富的传统,例如[20,21,26,27],以及许多其他参考文献。这种非交通率依赖于通勤坐标(标准)函数代数之间的映射(标准)和非交换坐标的功能。典型成分是换向器(24)本身[21]。在本节中,我们将提供可能应用配方的示例。鉴于该字母的结果的一般性,我们不会通过重点关注全面的量子电动力计算来做到这一点。后者需要面对必须处理无质量颗粒的微妙之处,这是指向克莱因悖论的问题,尽管在交换性的环境中,但已经以某种方式面对石墨烯的代数[28]。已经计划在此处提出的方法中进行非交流性克莱因悖论的未来工作[29]。我们将要做的是专注于运动学,这是测试本工作中引入的新型非交通性的最直接方法。(24)。这不需要应用变形场理论的完整动态来描述过程。我们只需要识别该位置操作员代表动量空间上有限位移的发生器。由于它们不上下班,这也意味着该动量的有限位移只有在界线时会上下班,但通常,它们不会上下班。电子动量位移的作用代表光子的吸收或发射。使用
两级发射器与光腔耦合的两层发射器取决于与状态周围密度的相互作用[1]。与弱耦合方案形成鲜明对比的是,发射器表现出percell增强的自发发射[2,3],发射异常的发射极强度g超过了发射机衰变速率(γ)和空腔损失速率(κ)与量子的量化量的量子和量子均与Emtrent的量子交换。它产生了光学响应中的狂犬病分裂,例如散射或光致发光(PL)光谱[4-8]。在这种强烈的耦合系统中,量子杂交状态的操作会诱导多种量子光学响应,从而导致量子光学设备的广泛应用[9-12]。在介电腔中,衍射量最大的模式体积分别需要高质量(Q)因子(Q)和低温才能实现强耦合,分别在κQ-1和γk b t之后[13-15]。高Q空腔导致发射极和腔之间的狭窄光谱重叠,即狭窄的呼声条件,以保持强耦合。这些约束显着构成了量子杂交状态的可控性,因此限制了强耦合方案中量子电动力现象的研究。最近,即使在室温下,由于其纳米级模式的体积,等离子腔的平台也达到了等离子和激子之间有效的强耦合[5,7,16]。
太阳在爆炸性太阳活动中释放了大量能量,例如太阳耀斑和冠状质量弹出(Webb和Howard,2012; Aschwanden等,2017; Benz,2017)。太阳能电晕可以加热到数百万度,大量带电的颗粒几乎可以加速到光速(Desai和Giacalone,2016年; Reames,2017)。加热的等离子体和高能量颗粒会在整个电磁频谱中增加太阳辐射,从无线电到伽马射线波长,这可能会在大约8分钟后立即对地球上层大气产生深远的影响。这些在地球上层大气中产生了额外的电离和加热,导致无线电停电,GNSS信号干扰和跟踪损失,航天器上的阻力增加,影响全球电路(GEC)以及许多其他现象(Botermer和Daglis,2007年; Buzulukova和buzulukova; Buzulukova and tsurutani; buzulukova and tsurutani; tsurutani; tasurutani; tacz22222;最近的研究表明,太阳耀斑效应可以通过电动力耦合扩展到地球的磁层(Liu等,2021; Liu等,2024)。当高能颗粒通过星际介质传播并到达地球附近(称为太阳能粒子(SEP)事件)时,它们可以对太空中的宇航员和航天器电子构成危险的辐射威胁(Vainio等人(Vainio等人,2009年,2009年; Shea and Smart,2012年)。该研究主题旨在在太阳及其地理上的后果上收集有关高能过程的科学贡献。本电子书中包含了八篇研究文章和一项综述,重点是太阳耀斑的多波长观察,加速度和能量颗粒的运输以及太阳喷发对耦合的磁层 - 离子层 - 热层 - 热层系统的影响。
对利用电力传输和处理信息产生了浓厚的兴趣。他申请的第一项专利是一台电动投票记录机 (1868);随后,他又发明了各种电报设备,直到 1869 年创立第一家公司 [2]。当时,大西洋两岸的技术人员和科学家主要将电视为一种通信媒介。直到发现了电动马达的原理,并在工程发明中实现了该原理(尤其是维尔纳·冯·西门子),电力供应时代才开始。电力首先在需要照明和力传输应用的地方产生。爱迪生首次在技术上实现了通过网络向消费者集中发电和配送的概念。他意识到大型连续运行发电机在效率方面具有哪些优势,他尤其认识到电能与天然气相比的特殊优势——即它可以以相对清洁和安全的方式长距离输送。当创意能给你带来金钱时,创意就特别有吸引力。爱迪生很早就意识到了这一点。因此,当他为自己的发明申请专利时,他采用的策略是“覆盖一切”原则:他拥有所有可以被视为专利的元素作为他的知识产权,因此,其他公司很难进入这个市场。就电能供应而言,爱迪生拥有另一个对今天的企业家仍然有价值的品质:他可以从系统的角度思考。1880 年左右,他的专利活动覆盖了从发电到配电和消费的整个价值链,尤其是在为民众提供电灯方面。他拥有发电机、电线、保险丝、电源线、电气绝缘体、电动机、世界著名的灯泡,当然还有其他受美国专利局保护的电气设备。而电表就是这种其他电气设备的一部分。这样的设备对于实现
可靠的单光子生成对于实施量子信息系统(例如量子加密和量子计算)非常重要[1]。半导体量子点是以single光子或光子对形式产生量子光的绝佳来源[2-13]。尤其是,已经表明,在通过适当的激光脉冲激发时,在激发态下准备量子点时,该点可以将单个光子发射到所需的输出模式中,例如腔或波导。由于每次激光脉冲后产生光子数状态,这一代人被称为“按需” [14]。按需单个光子源(SPSS)的关键数字是亮度,η(每个激光脉冲的平均光子数),二阶相干性,g(2)(0)(与单个光子纯度有关)(与单个光子纯度有关),以及 - 区分性,I(I(I(I),I(i(i(IM)量度,I(i(量度)已经开发了重大的研究工作,以提高SPS生成的效率,纯度和连贯性。艺术系统的状态已达到G(2)(0)= 0。012和i = 0的不可区分性。962 [9],尽管这些数字通常是在过滤后。不需要的光子对产生,从平面发射出发和驱动事件(例如通过声子吸收/发射[16,17])都是克服这些SPSS的持续改进的关键挑战。反馈,其中系统的输出用作稳定或控制机制,在各个平台上都很好地使用了[18-28]。这通常是通过基于测量的反馈来实现的,其中测量输出以告知对系统作用的外部控制[24 - 26,29 - 33]。但是,这种方法对于依赖于维持系统连贯性的量子信息系统是有问题的。相反,可以在系统级别中包含反馈并在系统本身上行动以避免测量:相干馈回。最近,显示波导量子电动力系统中的相干反馈可显着改变使用连续波泵的光子输出统计 -
物质的电动力描述需要构成方程,该方程将诱导的电荷ρ和半导体的电流密度j(或等效地为极化p,j = − p and p and p and p = - d iv p)to the elemagnetic finection e,b。在这方面的通用模型是Lorentz -oscillator和线性光学的Drude -Fre -Fre -Farrier模型。另一方面,对物质的非线性性质的描述主要使用电力轨道的功率序列扩展,但是在谐振或几乎谐振条件下,这种膨胀是不合适的。在某些情况下,新解决方案甚至可能“自发”在临界光线之上,并且可能导致第二次谐波产生,尽管不存在功率扩展(包括相对于光场的阶段)。因此,对半导体光学器件的现实描述需要适当地依赖光线,包括价 - 导导带持续状态,激子效应以及频带 - 效力动力学。这些现象是通过半导体bloch - 方程(SBE)始终描述的,而nowa-days成为半导体光学的标准模型。1在这种方法中,半导体对量子进行处理,从而导致一组极化和电子/孔分布函数的耦合的非线性差异方程(以此处将省略的高阶相关函数补充)。极化在(经典)麦克斯韦方程中充当源项。从这个意义上讲,SBE是一种半经典理论。[24K1](卷2)。它成功涵盖了线性和非线性现象,例如泵 - 探针,四波混合或光子 - 回声实验,如参考文献中所述。SBE在推导和应用方面具有相当大的复杂性,因此,我们将仅给出其派生的“行人版本”和一些选定的应用程序。详细信息可以在Haug和Koch的TexBook [94H1]中找到。为SBE的见面介绍,例如Sch'afer和Wegener的书[02S1]。我们以三个步骤处理该问题,如图1。(a)首先,我们研究两个级别的共鸣附近原子的动力学,并得出光学Bloch方程。在此公式中,阻尼
Ayse Koyun是环境科学与工程系的博士后科学家以及哈佛大学的工程与应用科学学院。她拥有维也纳技术大学技术化学(材料科学)的医生学位。在她的博士学位期间,AYSE专注于使用原子力显微镜进行材料表征,并研究了建筑材料的老化。作为哈佛大学的博士后科学家,她的研究现在以了解气候和人类健康的气溶胶的影响(悬挂在空中的微小颗粒)的影响。她探讨了诸如构造之类的活动如何产生这些粒子以及它们如何影响吸气者的福祉。在哈佛大学,Ayse采用了一种称为电动力悬浮的尖端技术,以悬浮在空中中的气溶胶颗粒,从而使她能够研究它们在经历各种条件时如何发展,例如光暴露和湿度变化。她检查了来自不同来源的颗粒,从燃烧植物产生的烟雾到特定的化合物。通过阐明这些悬浮的颗粒,她观察到它们的反应和转化,阐明了气溶胶在环境中的行为及其对气候的潜在影响。除了在哈佛大学的工作外,AYSE还为SABER(平流层气溶胶过程,预算和辐射效应)任务做出了贡献,这是一项扩展的空中科学测量计划,研究了上层对流层和下层平流层(UTLS)的运输,化学,微物理和辐射特性。利用NASA WB-57高海拔研究飞机,Ayse有助于表征任务期间收集的微型气溶胶。SABER部署提供了对气溶胶尺寸分布,成分和辐射特性的广泛详细测量,以及不同区域和季节中相关的微量气体。这些观察结果对于提高全球模型准确模拟平流层气溶胶加载变化的辐射,动力学和化学影响的能力至关重要。ayse的总体目标是提供有关气溶胶颗粒对我们世界的起源,转化和影响的关键见解。通过为气候模型的发展做出贡献,并制定了减轻气溶胶的不利影响的战略,她的目标是对气候研究和公共卫生产生有意义的影响。最终,她在实验室和Saber任务中收集的实验数据有助于完善全球化学气候模型,从而弥合了科学发现和大规模模拟之间的差距。
量子计算机从支持量子叠加状态或非古典相关性(例如纠缠)的能力中获得了力量。提出了各种系统以实施,包括腔量子电动系统,半导体量子点或冷原子。激子 - 孔子与这些系统具有许多相似之处:它们是由腔体构造的,部分由激子组成,并形成了Bose-Einstein冷凝物的类似物。因此,自然可以推测其量子应用。重要的是要欣赏我们所说的“量子”。在文献中,尤其是与激子 - 摩尔体子有关的,通常说量子涡流,量子流体或量子量。虽然涡旋可能显示出量化的绕组数,但它们也存在于经典的光波场中。所描述的量子流体通常是通过平均场波函数很好地描述的[1],该[1]由振幅和相位定义。在许多情况下,这种参数是准确的,这意味着我们没有访问系统的整个希尔伯特空间,这要求我们远离通常研究的相干状态或偏振子凝结物。经常使用的论点是,某物最终由量子粒子组成,因此量子也是如此。但是,我的计算机最终由量子粒子组成,但不能运行Shor或Grover的算法。激子 - 果龙的量子特征。早期的理论工作期望极化子之间的非线性相互作用会导致纠缠[2-6]。原则上,如果两个极地彼此散布,那么它们将被纠缠,但是,实际上,一个极性群体永远不会与两个极性人一起使用。与粒子的分布一起工作时,相互作用模式之间发展的量子相关性,例如,在平面微腔中以不同波形为特征的量子相关性更好地称为挤压(指在wigner函数代表时相位空间中分布的压壁)。仅从相互作用[9,10]中检测到有限的挤压[7,8]或量子互补性。可以证实,如果极性子被系统以外产生的纠缠光子激发,那么它们会保留此纠缠[11],因此毫无疑问它们是量子颗粒。单个极性子的行为也已得到充分的特征[12]。但是,从极地 - 帕利顿相互作用中产生牢固纠缠的状态一直具有挑战性。这可能是由于存在其他散射过程(带有障碍或声音声子)污染了不相关的极性子的信号。极化系统当前局限性的另一个例证在于单个隔离模式的物理。众所周知,当极性子注入共振激光器时,由于相互作用,它们的强度会增加,它们会浮出水面。这导致