草甘膦是一种用于破坏通常被称为杂草的除草剂。从1970年代开始,草甘膦的生产和使用在世界范围内稳步增长。到目前为止,尽管涉及风险,但这种除草剂仍在广泛使用(Cuhra等,2013)。草甘膦通过中断对植物功能必不可少的芳族氨基酸的合成而起作用(Lopes等,2018)。最近,人们对草甘膦对生物和环境的影响越来越关注(Johansson等,2018; Seide等,2018)。在这种除草剂的许多影响中是毒性,抗氧化剂活性的变化,内分泌破坏,对脂质的损害,组织学损害等。(Lopes等,2018; Ren等,2018; Lorenz等,2019)。草甘膦可以在土壤,植物和食品中作为污染物。gly在水中具有很高的溶解度,其大量使用会导致表面和地下水污染(Ruiz de Arcaute等,2018)。在各种培养基中检测草甘膦,例如色谱,光度法,
摘要 本研究考察了水热法制备的氧化铜还原氧化石墨烯纳米复合材料 (CuO/rGO) 的物理化学性质和耐腐蚀性。CuO/rGO 纳米复合材料具有明确而均匀的结构、减小的晶体尺寸和均匀分布的与 rGO 连接的 CuO 纳米粒子。X 射线衍射证实了 15.1 nm 结晶单斜 CuO 纳米粒子的制造。EDX 通过检测 Cu、O 和 C 成分来确认复合材料的成分。电化学阻抗谱 (EIS) 和动电位极化 (LSV) 测试评估了 CuO/rGO 纳米复合材料的耐腐蚀性。在 HCl 电解质下以 PPM 比率腐蚀的低碳钢板处理纳米复合材料涂层基材。通过将其腐蚀性能与 CuO/rGO 浓度(以 ppm 为单位)进行比较来评估复合材料的协同效应。耐腐蚀数据表明,CuO/rGO 复合材料的抑制剂浓度为 0、25、50、75 和 100 ppm 时性能有所改善。将 rGO 添加到复合材料中可以保护复合材料并加速电荷转移,从而减少腐蚀并提高稳定性。复合材料的 CuO 和 rGO 协同效应无论浓度如何都具有出色的耐腐蚀性,使其成为易腐蚀应用的可行材料。该研究开发了新颖有效的防腐方法,以保护食品、汽车和大型能源行业的材料。
通常使用两种方法来处理痕量有机污染物:吸附剂(例如活性炭)和高级氧化工艺 (AOP)。吸附剂产生的废物在分布式处理系统中难以管理,并且在去除经常污染水源的极性低分子量污染物(例如 1,4-二氧六环、1,2,3-三氯丙烷)方面往往效果较差。UV/H 2 O 2 工艺是水循环、地下水修复和工业废水处理中最流行的 AOP,因为它不会产生有毒副产品或以其他方式降低水质。1 然而,市售的 AOP 系统难以在小规模上使用,因为它们需要频繁补充试剂(例如 H 2 O 2 ),浸没式紫外线灯价格昂贵,石英套管容易结垢。开发适合分布式系统的经济型 AOP 系统可以填补技术空白,实现未开发的非传统水资源的管道平价。
纸张凭借其柔韧性和顺应性、亲水性和高机械强度等优良特性,已成为诊断设备中极具竞争力的基材。[7–10] 这些优异的特性使纸张在纸基设备制造中具有优异的性能。此外,它还环保、可重复使用/回收、可生物降解和生物相容性好。[9,11–13] 出于这些原因,随着全球对“绿色电子”的趋势和承诺,纸基传感器越来越受到关注。因此,本文提出了一种通过 IJP 技术开发传感器的灵活、一次性且低成本的解决方案。纸基分析设备(PAD)利用其微流体特性,成为开发灵活、一次性和更简单的设备的焦点。 [14–16] PAD 通常包括使用蜡印、光刻或化学气相沉积等技术在纸上图案化的亲水/疏水微结构排列。 [17] 2009 年,Dungchai 等人 [18] 展示了 PAD 与电化学传感器 (ePAD) 的组合如何比单微电极检测或比色 PAD 传感器实现更可靠的测量。 [19] 电化学检测是一种颇具吸引力的纸基微流体替代检测方案,因为它体积小、便携性强、成本低、灵敏度高,并且通过适当选择检测电位和/或电极材料可实现高选择性。 [20] 因此,电化学检测广泛应用于从临床诊断到环境生物传感的分析测量中。 [21–25]
摘要:我们报道了一种利用壳聚糖 - 晶纳米片(CS-GNS)纳米复合材料的高效电化学免疫传感器,用于检测玉米样品中黄曲霉毒素B 1(AFB 1)。用作修饰层的CS-GNS纳米复合材料提供了重要的特定表面积和生物相容性,从而提高了电子传递速率和抗体固定的效率。利用差异脉冲伏安法(DPV)和电化学阻抗光谱(EIS)进行了电化学表征。此外,优化了抗体浓度,pH,抗体固定时间和免疫反应时间。结果表明,免疫反应之前和之后的当前变化(∆ I)表现出与AFB 1浓度以及良好的特异性和稳定性的牢固线性关系(R 2 = 0.990)。线性范围从0.05 ng/ml扩展,检测极限为0.021 ng/ml(s/n = 3)。免疫传感器的恢复率在玉米样品中的恢复速率范围从97.3%到101.4%,使用有效的方法显示出有希望的性能,并表明检测谷物中真菌毒素的前景显着。
检测病原体,例如细菌和病毒,由于它们的数量和多样性,在分析医学中仍然是一个巨大的挑战。使用纳米材料开发快速,廉价,特定和对病原体的敏感检测,与微流体设备,扩增方法进行集成,甚至结合这些策略的策略,都受到了显着的关注。尤其是在威胁健康的COVID-19爆发之后,病原体的快速而敏感的分解变得非常关键。可以通过电化学,光学,质量敏感或热方法来实现病原体的检测。在其中,通过带来不同的优势,即它们表现出更广泛的检测方案和实时量化以及无标签的测量方法,这是非常有希望的,即它们提供了更广泛的应用。在这篇综述中,我们讨论了使用电化学生物传感器检测细菌和病毒的最新进展。此外,通过分析物,生物识别和转导元件,广泛回顾了用于病原体检测的电化学生物传感器。还讨论了各种病原体与电化学生物传感器的不同制造技术,检测原理和应用。
the voltage difference (ΔE) is 0.348 V. The Ni 2+ /Ni 4+ anodic and cathodic peaks of the Mo/F-2 sample correspond to 4.879 V and 4.578 V, respectively, and the ΔE value is 0.301 V. Typically, the potential difference (ΔE) between the anode peak and the cathode peak reflects the electrochemical polarization [47].MO/F-2样品的ΔE值小于原始样品,表明MO/F-2样品中的锂插入/提取动力学更快。结果与上述速率性能测试结果一致,表明适当量的MO-F共同掺杂可以帮助减少极化,从而提高LNMO材料的速率能力。
研究诚信 我们的使命是通过研究和分析帮助改善政策和决策,这一使命通过我们的核心价值观——质量和客观性以及我们对最高诚信和道德行为的坚定承诺得以实现。为确保我们的研究和分析严谨、客观和不偏不倚,我们对研究出版物进行了严格而严格的质量保证流程;通过员工培训、项目筛选和强制披露政策避免出现和实际的财务和其他利益冲突;并通过我们致力于公开发表研究结果和建议、披露已发表研究的资金来源以及确保知识独立的政策,追求研究工作的透明度。有关更多信息,请访问 www.rand.org/about/research-integrity。
Carolina A&T州立大学,美国北卡罗来纳州格林斯伯勒,美国3北卡罗来纳州A&T州立大学应用工程技术系,Carolina A&T州立大学,美国北卡罗来纳州格林斯伯勒,美国3北卡罗来纳州A&T州立大学应用工程技术系,