由于电解质很难进入纳米多孔还原石墨烯(RGO)电极的纳米构固定空间,因此实现了这些设备的最佳电化学性能是一个挑战。在这项工作中,在电压控制的纳米孔RGO电极的电化学激活过程中研究了界面州现象的动力学,该电化学激活在人体能力和电化学障碍方面导致电化学性能增强。原位/操作表征技术用于揭示激活过程中引入的不可逆材料变化的动力学,包括纳米孔内的离子差异和水的构成,以及含氧组的还原和RGO Interlayer距离的减少。此外,操作技术用于揭示RGO电极的复杂极化依赖性动态响应的起源。研究表明,石墨烯基平面中剩余官能团的可逆质子化/去质子化和阳离子电吸附/解吸过程控制纳米孔RGO电极的假能性能。这项工作为纳米多孔RGO电极的电化学循环过程中发生的表面化学,离子实现和脱染过程之间的复杂相互作用带来了新的了解,从而为设计基于Nanoporor rgo的高强度电极设计了新的见解。
摘要:激光定向能量沉积(LDED)过程中,快速熔化和凝固通常会导致孔隙和粗大柱状枝晶的出现,从而降低沉积合金的性能。本研究引入原位超声轧制(UR)作为增强LDED试件耐腐蚀性能的创新方法,深入研究了组织特征及其与耐腐蚀性能的关系。研究结果表明,LDED-UR试件的孔隙率和尺寸均有所减少。在LDED-UR工艺产生的剧烈塑性变形的影响下,出现了完全等轴晶粒,其平均尺寸减小至28.61 μm(而柱状晶粒的LDED试件为63.98 μm)。与LDED试件相比,LDED-UR试件的耐电化学腐蚀性能明显提高。这种耐腐蚀性能的提高可以归因于小孔隙率低、富铬铁素体相细小且分布均匀,以及由于晶粒边界致密而形成了致密厚的钝化膜。微观结构与腐蚀行为之间相关性的洞察为提高 LDED 样品的耐腐蚀性能开辟了一条新途径。
ec-椭圆法7 1963年Hg 2 Cl 2膜的正常阳极形成在Hg电极上首先原位电化学光谱。由于仪器的检测敏感性有限,具有一定厚度包含大量分析物的薄膜电极是高度可取且具有决定性的。ec-uv-vis 8 1964年o- t olidine o-tolidine o-tolicine oferocyanide和计时型电氧化的正常电 - 氧化,首先是溶液阶段电化学产物的原位光谱研究。分析物需要在紫外线波长中吸收光。EC-IR 9 1966年,基于ATR的8-喹诺醇和四甲基苯胺自由基的基于ATR。首先使用振动光谱法,首先将GE同时用作工作电极和用于多内部反射的波导。ec-SHG 10 1967正常电动Si和Ag电极。首先在电化学界面处的原位非线性光谱法。EC-Raman 11 1973 Hg 2 Cl 2,Hg 2 BR 2和HGO的正常电化学沉积。Hg 2 Cl 2,Hg 2 BR 2和HGO(Bockris在第一ec-Elipsometry中研究的同一系统)是强烈的拉曼散射,这有助于正常的拉曼测量(外部反射),也促进了光学构型和细胞的优化。EC-IR使用外部反射12,13EC-IR使用外部反射12,13
(i)₹ .31,000/- pm + HRA 给通过(a)国家资格考试 - CSIR-UGC NET 包括讲师职位(助理教授职位)或 GATE 或(b)通过中央政府部门及其机构和机构进行的国家级考试选拔过程选拔的学者。
电能在我们的日常生活和工业生产中起着非常重要的作用。化石燃料、核热能和可再生能源(例如太阳能、风能和生物质能)都可以转换成电能[1]。不幸的是,能量转换过程总是伴随着大量的能量损失。例如,核热能转化为电能的效率仅为约30%。此外,来自可再生能源的电能高度依赖于天气、季节和地域,无法及时满足实际需求。因此,迫切需要解决电能的存储和转换问题。开发先进的能量存储和转换技术对于提高能源利用效率和扩大能源应用领域至关重要。二次电池、超级电容器、水电解器和燃料电池是一些典型的电化学能量存储和转换装置。图1.1显示了这些电化学能量存储和转换系统的示意图[2]。水电解器可将电能转化为化学能,产生氢气(转化效率约为 70%),供燃料电池进一步使用。在相反的过程中,燃料电池将化学能转化为电能。二次电池(如锂离子电池)的能量转化过程是可逆的。在充电过程中,电能可以转化为化学能 [3]。在放电过程中,化学能又转化回电能。转化速度决定了系统功率,而存储容量与系统能量有关。一般来说,由于内部系统的原因,能量转换和存储的活性材料被集成到二次电池中。与二次电池不同,电解器和燃料电池系统适用于分离的转换器和存储。这种电化学存储和转换系统通常比集成存储和转换器的系统提供更高的能量。因此,电解器和燃料电池也引起了广泛关注 [4]。本文简要概述了典型的二次电池、超级电容器、燃料电池和水电解器。
日益严重的环境问题与能源危机,促使全球掀起碳中和战略,从而推动了风能、太阳能、燃料电池等新能源转换技术以及新能源存储技术尤其是电化学能源装置的发展。其中,超级电容器(Wei et al.,2017)、锂/钾/锌/钠/镁离子/空气电池(Wei et al.,2020)和燃料电池(Wei et al.,2014)作为下一代先进电源,因其能量密度高、规模灵活性强、环境友好等特点,引起了广泛研究。为加速电化学能源转换与存储产业的发展,《Frontiers in Chemistry》杂志提出了“先进电化学能源装置”的研究课题,邀请了多所知名大学的专家、研究人员分享该领域的发展前景或进展。本研究课题共包含4篇论文,其中包括3篇研究论文和1篇综述,代表了当前先进电化学能源装置的热门研究方向,作者对这些技术给出了深刻的见解。
Matteo Massetti 1、Silan Zhang 1,2、Harikesh Padinare 1、Bernhard Burtscher 1、Chiara Diacci 1、Daniel T. Simon 1、Xianjie Liu 1、Mats Fahlman 1,2、Deyu Tu 1、Magnus Berggren 1,2、Simone Fabiano 1,2 * 1 林雪平大学科学技术系有机电子实验室,瑞典诺尔雪平 SE-601 74。电子邮件:simone.fabiano@liu.se 2 林雪平大学瓦伦堡木材科学中心,瑞典诺尔雪平 SE-601 74。关键词:3D 打印、油墨配方、OECT、有机混合离子电子导体摘要
图 2. p(g2T-TT) 和 pgBTTT 聚合物的截面突出显示 S--O 相互作用(黑色虚线 OHDGLQJ WR SODQDUL]HG GLKHGUDOV EROG UHG ZLWK ș -180°),以及在没有 S--O 的情况下具有扭曲二面角的截面(WHUDFWLRQV EROG EODFN ZLWK ș -156°)。红色虚线方块突出显示 pgBTTT 和 p(g2T-77 *HRPHWULHV ZHUH RSWLPL]HG XVLQJ Ȧ% ;' - * ZKHUH Ȧ Bohr -1
图1:a)石墨电极的草图,该石墨电极由几个颗粒(带有波浪形的椭圆形)组成。b)具有金属锂(灰色)的石墨表面的强度。电解质中的溶解锂,板条的锂和插入的锂可以沿着三个显示的路径(箭头)反应。锂镀金N PL/ST和化学插入N CH.Int。出现在覆盖的表面A PL(紫色)时,而插入室间则是通过石墨和电解质之间的界面(深绿色)进行的。c)绘制了电化学模拟的石墨电极的细分。在每个元素上跟踪镀锂,从而可以部分覆盖石墨颗粒。
本期刊文章的自构建后版本可在Linköping大学机构存储库(DIVA)上获得:https://urn.kb.se/resolve?urn = urn= urn= urnt:se:se:se:se:liu:diva-206387 N.B. N.B.:引用这项工作时,请引用原始出版物。Padinhare Cholakkal,H.,Tu,D.,Fabiano,S。(2024),神经形态感知的有机电化学神经元,自然电子,7(7),525-536。 https://doi.org/10.1038/s41928-024-01200-5