这份全面的技术文档提供了有关生物医学研究环境中动物外科手术的重要信息。它包括关键主题,包括术前程序,麻醉管理,镇痛方案,无菌/无菌技术,外科手术程序,切口闭合方法和术后护理。必须遵守根据标准程序制度动物护理和使用委员会(IACUC)制定的准则。有关更多详细信息,请咨询您的大学的IACCARPRECRED政策。
1 ,瓦拉拉克大学,塔萨拉区222,塔萨拉区,泰国,泰国,泰国80160,泰国2个微系统化学分析(MINOS)纳米技术(MINOS) mubdiulislam.rizu@urv.cat 3科学技术学院的创意创新,科学技术学院,Nakhon Si Thammarat Rajabhat University,Nakhon Si Thammarat 80280,泰国; fahmida_tina@nstru.ac.th 4 4机械和电气工程学院,吉林电子技术大学,吉林541004,中国; zhaoling_huang@guet.edu.cn 5电气和计算机工程学院,德累斯顿,德累斯顿,德累斯顿,德累斯顿; anindya.nag@tu-dresden.de 6触觉互联网中心与人类融合(CETI),TechnischeUniversitätDresden,01069德累斯顿,德国7号,德国7号民用和机械工程学院,珀斯,珀斯,珀斯,华盛顿州6102,澳大利亚,澳大利亚,珀斯; nasrin.afsarimanesh@curtin.edu.au *通信:mdeshrat.al@mail.wu.ac.th或fealahi@gmail.com,瓦拉拉克大学,塔萨拉区222,塔萨拉区,泰国,泰国,泰国80160,泰国2个微系统化学分析(MINOS)纳米技术(MINOS) mubdiulislam.rizu@urv.cat 3科学技术学院的创意创新,科学技术学院,Nakhon Si Thammarat Rajabhat University,Nakhon Si Thammarat 80280,泰国; fahmida_tina@nstru.ac.th 4 4机械和电气工程学院,吉林电子技术大学,吉林541004,中国; zhaoling_huang@guet.edu.cn 5电气和计算机工程学院,德累斯顿,德累斯顿,德累斯顿,德累斯顿; anindya.nag@tu-dresden.de 6触觉互联网中心与人类融合(CETI),TechnischeUniversitätDresden,01069德累斯顿,德国7号,德国7号民用和机械工程学院,珀斯,珀斯,珀斯,华盛顿州6102,澳大利亚,澳大利亚,珀斯; nasrin.afsarimanesh@curtin.edu.au *通信:mdeshrat.al@mail.wu.ac.th或fealahi@gmail.com,瓦拉拉克大学,塔萨拉区222,塔萨拉区,泰国,泰国,泰国80160,泰国2个微系统化学分析(MINOS)纳米技术(MINOS) mubdiulislam.rizu@urv.cat 3科学技术学院的创意创新,科学技术学院,Nakhon Si Thammarat Rajabhat University,Nakhon Si Thammarat 80280,泰国; fahmida_tina@nstru.ac.th 4 4机械和电气工程学院,吉林电子技术大学,吉林541004,中国; zhaoling_huang@guet.edu.cn 5电气和计算机工程学院,德累斯顿,德累斯顿,德累斯顿,德累斯顿; anindya.nag@tu-dresden.de 6触觉互联网中心与人类融合(CETI),TechnischeUniversitätDresden,01069德累斯顿,德国7号,德国7号民用和机械工程学院,珀斯,珀斯,珀斯,华盛顿州6102,澳大利亚,澳大利亚,珀斯; nasrin.afsarimanesh@curtin.edu.au *通信:mdeshrat.al@mail.wu.ac.th或fealahi@gmail.com,瓦拉拉克大学,塔萨拉区222,塔萨拉区,泰国,泰国,泰国80160,泰国2个微系统化学分析(MINOS)纳米技术(MINOS) mubdiulislam.rizu@urv.cat 3科学技术学院的创意创新,科学技术学院,Nakhon Si Thammarat Rajabhat University,Nakhon Si Thammarat 80280,泰国; fahmida_tina@nstru.ac.th 4 4机械和电气工程学院,吉林电子技术大学,吉林541004,中国; zhaoling_huang@guet.edu.cn 5电气和计算机工程学院,德累斯顿,德累斯顿,德累斯顿,德累斯顿; anindya.nag@tu-dresden.de 6触觉互联网中心与人类融合(CETI),TechnischeUniversitätDresden,01069德累斯顿,德国7号,德国7号民用和机械工程学院,珀斯,珀斯,珀斯,华盛顿州6102,澳大利亚,澳大利亚,珀斯; nasrin.afsarimanesh@curtin.edu.au *通信:mdeshrat.al@mail.wu.ac.th或fealahi@gmail.com
增强现实 (AR) 是一种计算机图形技术,可在现实世界和虚拟世界之间创建无缝界面。AR 的使用迅速扩展到医疗保健、教育和娱乐等不同领域。尽管 AR 潜力巨大,但其界面控制依赖于外部操纵杆、智能手机或易受光线影响的固定摄像头系统。本文介绍了一种集成 AR 的软性可穿戴电子系统,该系统可检测受试者的手势,从而更直观、准确、直接地控制外部系统。具体来说,这种软性一体式可穿戴设备包括可扩展电极阵列和集成无线系统,用于测量肌电图,从而实时连续识别手势。系统中嵌入的先进机器学习算法能够对十种不同的类别进行分类,准确率高达 96.08%。与传统的刚性可穿戴设备相比,由于皮肤贴合性,多通道软性可穿戴系统在多次使用时可提供更高的信噪比和一致性。用于无人机控制的 AR 集成软可穿戴系统的演示抓住了平台技术的潜力,为用户提供大量人机界面机会,实现与外部硬件和软件的远程交互。
由于电动汽车的流行率上升,锂离子电池市场的稳定扩展产生了对开发低成本电池生产方法的需求,而环境影响较小。Zeon一直在开发一种用于干燥形成方法的技术,这是一种生产锂离子电极电极的创新方法。与常规的湿涂层方法* 1不同,新的干燥地层方法* 2不需要广泛的电极干燥过程,因此,预计它将以较低的资本投资减少CO 2排放。虽然某些商业生产过程已经结合了干燥的形成,但Zeon正在开发的干地层方法可以以等于或比湿涂层更快或更快的地层速度同时应用于阴极和阳极。该方法还可以使制造电极免受污染和多氟烷基物质(PFA)的污染,使其成为世界上第一个符合预期较严格的PFAS法规的世界第一个 *3个低环境影响技术。
摘要:锂离子电池(LIB)已成为各种应用的必不可少的能量存储设备,从便携式电子到电动汽车到可再生能源系统。LIB的性能和可靠性取决于几个关键组件,包括电极,分离器和电解质。其中,电极的粘合剂材料在确定LIB的整体性能和耐用性方面起着至关重要的作用。本综述介绍了传统上在LIBS的阴极,阳极和分离材料中使用的聚合物粘合剂。此外,它探讨了传统聚合物粘合剂中发现的问题,并检查了锂离子电池的下一代聚合物粘合剂材料的研究趋势。迄今为止,N-甲基-2-吡咯烷酮(NMP)作为锂电池电极生产中的溶剂的广泛使用已成为标准实践。然而,最近对其高毒性的担忧促使环境审查增加并施加严格的化学法规。因此,越来越紧迫的探索替代方案既是环境良性且更安全的用于电池制造的替代方案。对锂电池行业中对不同粘合剂研究的需求不断增长,进一步强调了这种紧迫的需求。鉴于当前对可持续性和环境责任的重视,必须研究一系列粘合剂选项,这些粘合剂选项可以与绿色和生态意识的电池生产的不断发展的景观保持一致。在这篇评论论文中,我们引入了各种活页夹选项,可以考虑到当前对电池性能增强和环境责任的强调,可以与环保和可持续的电池生产的不断发展的景观保持一致。
摘要:通过可扩展且经济的工艺将石油焦和染料废水等工业废弃物战略性地升级改造为增值材料是同时解决能源和环境问题的有效方法。用杂原子掺杂碳电极被证明可以通过改变电极润湿性和电导率来显著提高电化学性能。这项工作报告了利用染料废水作为唯一掺杂源,通过一步热解法合成 N 和 S 共掺杂石油焦基活性炭 (NS-AC)。更重要的是,我们大规模生产的废水和石油焦衍生的活性炭(20 千克/批)在以 1 M TEATFB/PC 为电解质的软封装全电池中显示比表面积为 2582 m 2 g −1,能量密度约为 95 Wh kg −1。该可扩展的生产方法与绿色可持续的工艺可轻松被工业采用和扩大规模,而无需复杂的工艺和/或装置,从而提供了一种以低成本从废物中生产功能化碳的便捷绿色途径。
我们设计了 Joie,一款基于快乐的脑电图 (EEG) 脑机接口 (BCI)。用户通过想象快乐的想法和图像来与 Joie 互动,这些想法和图像会改变他们的前额叶脑电图不对称。这些不对称控制着他们角色在无尽奔跑视频游戏中的运动,其中快乐的想法会导致左前额叶不对称,从而导致获得奖励。在此演示中,我们向 Joie 展示了可穿戴的干性皮肤适形聚合物电极脑电图头带。我们进行了一项试点评估(11 名参与者,每位参与者 3 次训练课程),以评估神经反馈功效和工作量。我们观察到,我们的参与者能够执行相对左激活,显著高于右激活,并且在单次课程中改善了静息基线不对称。我们还报告了感知到的用户需求、努力和表现。
摘要 —P300 拼写器是脑机接口研究中广泛使用的应用。事实证明,P300 拼写器可以作为神经反馈训练工具,通过逐渐增加拼写任务的难度来增强注意力。这种自适应方法使用户更难正确拼写单词,鼓励他们提高注意力以抵消日益增加的难度。因此,自适应 P300 拼写器有可能成为患有 ADHD 的儿童、患有痴呆症的老年患者的治疗选择,并成为健康成年人的认知增强工具。但是,训练长度(包括设置时间)需要很快,以确保用户接受。本研究调查了使用和不使用 xDAWN 空间滤波器时不同电极子集对 P300 拼写器性能的影响。结果表明,xDAWN 空间滤波器可以提高许多电极的性能,但会降低少于八个电极的结果。对于近乎完美的性能至关重要且有许多电极可用的场景,建议使用一组带有 xDAWN 空间滤波器的 16 个电极。对于需要考虑成本和设置时间,且可以接受较低性能的情况,使用不带空间滤波器的六个电极就足够了。
Paoline.Coulson@nerf.be 脑皮层电图能够记录来自大脑表面的高质量信号。该技术可覆盖广泛的大脑,这对于临床应用至关重要,例如癫痫发作区的划定、皮层功能的映射或脑机接口神经信号的解码。提高这些记录的分辨率有望提高性能,但需要增加电极密度。1 在被动方案中,每个电极都单独连接到读出系统,从而产生笨重而复杂的连接器。在这里,我们引入了一种主动连接方案,其中使用薄膜晶体管来互连多路复用电极,从而使电极与导线的比率呈指数增加。此前,我们已经开发了一种概念验证设备,其中集成了 256 个电极和氧化铟镓锌 (IGZO) 晶体管,仅使用 32 条导线即可寻址。增量 ΔΣ CMOS 读出集成电路是定制设计的,复用率为 16:1。该系统通过记录小鼠体感皮层的信号在体内进行了验证,其噪声水平低于类似的多路复用设备。2 在这里,我们的技术已适应柔性半导体代工厂建立的外部生产流程。借助此流程,该设备将工业制造的晶体管整合到柔性聚酰亚胺基板上,从而实现低成本、可扩展且快速生产的技术。我们设备的新版本目前正在开发中,它整合了 3,072 个电极,仅用 128 根电线即可寻址,多路复用率为 32:1。电极间距减小到 200 µm,电极直径从 100 到 30 µm。整个阵列覆盖 2×1 cm² 的面积,厚度为 30µm,这使其能够符合人脑曲率。我们的设备展示了多路复用的潜力,可以通过简化的连接方案实现高密度和大面积记录,而这是传统无源电极技术无法实现的。该设备为改进诊断和治疗铺平了道路,例如升级的神经假体,具有增强的解码性能。改进的制造流程实现了可扩展性,从而促进了该技术的使用,并使其更接近临床转化。
经颅直流电刺激 (tDCS) 是一种非侵入性脑刺激方法,通过在阳极和阴极电极之间短时间(通常每次少于 30 分钟)施加电流(通常小于 2 mA)来调节神经活动 (17)。之前的荟萃分析报告称,向背外侧前额皮质 (DLPFC) 施加 tDCS 可减轻精神分裂症患者的幻觉(阳性症状;Hedges' g = 0.86)和阴性症状(0.41),并改善神经认知功能,特别是工作记忆(0.41)(18-23)。最近,据报道,针对 DLPFC 的 tDCS 还可以提高日常生活技能(功能能力)(24)、对疾病的洞察力(25)和元认知(26)。关于社会认知,我们系统回顾的数据表明,前额皮质上的经颅直流电刺激 (tDCS) 可增强情绪识别 (27),而左侧颞上沟 (STS) 上的刺激可提高这些患者的心理理论得分 (28-30)。因此,尽管存在争议,但经颅直流电刺激 (tDCS) 的电极组合,尤其是阳极刺激部位,可能决定其对精神病患者症状和功能的影响 (31-33)。总之,需要进一步考虑以了解应刺激哪些大脑区域以改善精神分裂症的特定症状 (34)。