摘要:循环肿瘤DNA(ctDNA)检测已被认为是一种有前途的癌症诊断液体活检方法,各种ctDNA检测用于早期检测和治疗监测。基于可分散磁性纳米粒子的电化学检测方法已被提议作为基于检测性能和平台材料的特点的ctDNA检测的有前途的候选方法。本研究提出了一种纳米粒子表面局部基因扩增方法,将Fe3O4-Au核-壳纳米粒子整合到聚合酶链式反应(PCR)中。这些高度分散且磁响应的超顺磁性纳米粒子充当纳米电极,在PCR扩增后在纳米粒子表面原位扩增和积累目标ctDNA。随后捕获这些纳米粒子并进行重复的电化学测量以诱导重构介导的信号放大,以实现超灵敏(约3aM)和快速(约7分钟)的体外转移性乳腺癌ctDNA检测。该检测平台还可以检测体内样本中的转移性生物标志物,凸显了其临床应用的潜力,并可进一步扩展到对各种癌症进行快速、超灵敏的多重检测。关键词:循环肿瘤DNA、液体活检、基因扩增、电化学检测、磁性纳米粒子、表面功能化、超顺磁性
穿透神经电极通过对单个动作电位进行时间分辨的电检测,提供了一种强大的方法来解读大脑回路。这种独特的能力对基础和转化神经科学做出了巨大贡献,既使我们能够从根本上理解大脑功能,又可以应用人体假肢来恢复关键的感觉和运动。然而,传统方法受到可用传感通道数量稀少和长期植入效果不佳的限制。记录寿命和可扩展性已成为新兴技术中最受追捧的改进。在这篇评论中,我们讨论了过去 5-10 年的技术进步,这些进步使得比以往任何时候都更大规模、更详细、更持久地记录工作中的神经回路成为可能。我们介绍了穿透电极技术的最新进展,展示了它们在动物模型和人类中的应用,并概述了推动未来技术发展的基本设计原则和考虑因素。
摘要:近年来,基于分类的肌电控制引起了极大的兴趣,导致具有先进功能的假肢手,例如多围手。到目前为止,通过增加表面肌电图(SEMG)电极的数量或添加其他感应机制来实现高分类精度。尽管许多规定的肌电手仍然采用两电极SEMG系统,但仍缺乏有关信号处理和分类性能的详细研究。在这项研究中,招募了九名健全的参与者执行六种典型的手动动作,使用Delsys Trigno Research+ Acquisition System从两个电极中获取了来自两个电极的SEMG信号。信号处理和机器学习算法,特别是线性判别分析(LDA),K-Nearest邻居(KNN)和支持向量机(SVM),用于研究分类精度。总体分类精度为93±2%,动作特异性精度为97±2%,F1得分为87±7%,与多电极系统报道的总体精度为87±7%。与LDA和KNN算法相比,使用SVM算法实现了最高精度。揭示了分类精度与特征数量之间的对数关系,这在五个特征上平稳。这些全面的发现可能有可能有助于具有两个SEMG电极的通常开处方的肌电手部系统的信号处理和机器学习策略,以进一步提高功能。
摘要:在染料敏化的太阳能电池(DSSC)中,反电极(CE)作为电子传递剂和氧化还原夫妇的再生剂起着至关重要的作用。与通常由玻璃基底物(例如FTO/玻璃)制成的常规CE,聚合物底物似乎是新兴的候选物,这是由于它们的内在特性轻巧,高耐用性和低成本。尽管有很大的希望,但当前的CES在聚合物基板上的制造方法遭受了严重的局限性,包括低电导率,可伸缩性,过程复杂性以及对专用真空设备的需求。在本研究中,我们采用并评估了一条完全的加性制造路线,该路线可以以高通量和环保的方式为DSSC制造CE,并提高性能。提出的方法顺序包括:(1)材料挤出3-D打印聚合物底物; (2)通过冷喷雾颗粒沉积的导电表面金属化; (3)用石墨铅笔过度涂层薄层催化剂。制造的电极的特征是微结构,电导率和光转换效率。由于其有前途的电导率(8.5×10 4 S·M-1)和微区岩石表面结构(rA≈6.32µm),与由FTO/Glass制成的传统C相比,具有添加性生产的CES的DSSC导致了繁殖的CES,导致了约2.5倍的光率效率。研究结果表明,提出的添加剂制造方法可以通过解决常规CE制造平台的局限性来推动DSSC的领域。
hm的定律,历史上有1个对电路至关重要的第一个数学关系,指出通过宏观材料的当前I与所施加的偏置电压V成正比。这是通过经验测量值的经验测量来支持的,这些电流和长度尺度在许多数量级上有所不同,并且绝大多数材料都具有。考虑到由于原子或离子在经典力学框架内的快速散射而导致的电子曲折运动中施加的电场引起的加速度,Drude Model 2成功地揭开了净电子漂移,平均速度与现场成比例,并因此是ohm ohm的第一个微观依据。在自由电子模型中考虑了费米统计数据,Sommerfeld 3能够对金属中的欧姆定律提供第一个量子机械依据。固体的量子理论将各种宏观固体的欧姆电导率与表征特定能带结构表征的带隙的(非)存在之间的差异。4取决于频带隙的存在和/或线性库比波响应理论5,6明确考虑实际带结构的明确考虑允许估计欧姆(也称为零偏置或线性电导率)g并提供微观材料为什么某些材料为导电者,某些半径和某些胰岛素是某些材料,某些材料是某些半径和某些岛化的。在1920年代,在量子力学的前夕,人们对欧姆定律产生了重新兴趣,欧姆定律被认为在原子量表上失败了。7电子在短距离上的运动是连贯的,与宏观材料中发生的不一致的电子碰撞形成了鲜明的对比,从而引起焦耳
1 复旦大学信息科学与技术学院智能医疗电子研究中心,上海 200433,中国;zhwang20@fudan.edu.cn (Z.W.); 22210720117@m.fudan.edu.cn (Y.D.); chenhongyudesign@outlook.com (H.C.) 2 中国科学技术大学生命科学与医学部生物医学工程学院创新医疗器械研究院智能医疗设备与器械研究中心,合肥 230026,中国 3 中国科学技术大学苏州高等研究院,苏州 215123,中国 4 悉尼大学生物医学工程学院,悉尼,新南威尔士州 2006,澳大利亚; wei.chenbme@sydney.edu.au 5 复旦大学人类表型组研究所,上海 201203,中国 * 通讯地址:wyuan2023@ustc.edu.cn (W.Y.); chenchen_fd@fudan.edu.cn (C.C.)
知道在某些任务中,一个人的总体工作量水平在不同领域很有帮助。为预防精神障碍,例如由于永久性压力和超负荷而倦怠,知道一个人的整体工作量水平(Greif&Bertino,2022)是一个优势,因为过去的精神障碍趋势(世界卫生组织,2023年,2023年),必须尽可能地避免这种情况。尤其需要在工作量方面更好地监控安全 - 关键环境,以保护在其中工作的人。例如,在太空飞行中,重要的是要了解每个宇航员的工作量水平,因为更高的工作量水平与犯错的风险更高有关(Morris&Leung,2006年),这可能会迅速致命地结束。此外,由于宇航员一般不使用宇航员,因此ISS和太空中的微重力(ESA,2023)可能会影响整体工作量。Wickens(2008)的多重资源模型定义了影响工作负载的不同维度。微重力的对象的行为与地球重力中的物体显着不同。因此,视觉处理和特殊活动消耗了更多资源,因为宇航员会看到行为
大脑界面可以刺激神经元,造成最小的损害,并且长时间工作将是未来神经假想的核心。在此,据报道,在视觉皮层的电微刺激过程中,具有高灵活的薄聚酰亚胺柄的长期性能,具有几个小(<15μm)的电极。当在体外施加了数十亿个电脉冲时,电极表现出显着的稳定性。将设备植入小鼠的一级视觉皮层(区域V1),并训练动物以检测电气微刺激时,发现感知阈值为2-20微型剂量(μA),该阈值远低于远低于电极与andstand的最大电流。体内设备的长期功能非常出色,稳定的性能长达一年多,对脑组织的损害很小。这些结果证明了薄浮动电极对失去感觉函数的长期恢复的潜力。
摘要:我们描述了一种生物电极系统,用于评估细胞色素P450 2E1(CYP2E1)对氯唑唑酮的电催化活性。使用人CYP2E1,细胞色素P450还原酶(CPR)和细胞色素b 5(Cyt B 5),使用了系统的一个电极将Baccosomes immotimbilize Baccosomes immotimbilize Baccosomes。第二个电极用于用平方波伏安法注册,通过其直接的电化学氧化来量化CYP2E1产生的6-羟基氯唑唑酮。Using this system, we determined the steady-state kinetic parameters of chlorzoxazone hydroxylation by CYP2E1 of Bactosomes immobilized on the electrode: the maximal reaction rate ( V max ) was 1.64 ± 0.08 min − 1 , and the Michaelis constant ( K M ) was 78 ± 9 µ M. We studied the electrochemical characteristics of immobilized Bactosomes and have揭示了从电极中的电子转移既出现到CPR的平均假体和CYP2E1和CYT B 5的血红素铁离子。此外,已经证明CPR具有激活CYP2E1电催化活性向卫生的能力,这可能是通过分子间电子从CPR的电化学还原形式转移到CYP2E1血红素铁离子。
然而,石墨烯设备物理学的一个重要结果是,有必要将石墨烯单层封装在两片绝缘二维材料六角型硝酸硼(HBN)之间,以实现理想的较高的运输特性。[27,28]此包封可确保在环境条件下进行化学稳定,因为石墨烯受到保护不受大气吸附物的保护。封装还可以确保原子上的石墨烯片,从而实现室温弹道传输。[27]因此,HBN中石墨烯的封装已迅速成为设备社区中的标准平台,并且很可能成为潜在的未来石墨烯设备行业中的主要平台。此外,扭曲的双层石墨烯的生长领域完全取决于HBN封装以生产扭曲的双层。石墨烯和HBN之间的强范德华吸引力是使石墨烯晶体一部分精确的角度堆叠到自身上的方法。[28,29]