摘要:通过可扩展且经济的工艺将石油焦和染料废水等工业废弃物战略性地升级改造为增值材料是同时解决能源和环境问题的有效方法。用杂原子掺杂碳电极被证明可以通过改变电极润湿性和电导率来显著提高电化学性能。这项工作报告了利用染料废水作为唯一掺杂源,通过一步热解法合成 N 和 S 共掺杂石油焦基活性炭 (NS-AC)。更重要的是,我们大规模生产的废水和石油焦衍生的活性炭(20 千克/批)在以 1 M TEATFB/PC 为电解质的软封装全电池中显示比表面积为 2582 m 2 g −1,能量密度约为 95 Wh kg −1。该可扩展的生产方法与绿色可持续的工艺可轻松被工业采用和扩大规模,而无需复杂的工艺和/或装置,从而提供了一种以低成本从废物中生产功能化碳的便捷绿色途径。
近年来,电动汽车市场的增长显着增长。该行业的主要目标是降低生产成本。值得注意的是,构成总生产成本的40%的电池组将其中约64%分配给电极的制造。监视关键电池参数,例如厚度,负载,密度,电导率和孔隙率,以最大程度地减少电极生产过程中的废物。直到最近,还没有能够模拟这些参数的技术。但是,Terahertz技术已成为一种评估电池电极的强大,无损和安全的方法。电池电极涂在由铝和铜等材料制成的底物上。由于METELS完全反映了Terahertz波,因此可以在反射模式下测量电极。这种方法允许确定涂层的厚度及其复杂的折射率,可以解释以推断关键电极参数。在我们的研究中,我们利用了Teraview的最新进步Teracota,Teracota是一种设计用于工业应用的Terahertz系统,配备了自我引用的Terahertz传感器。传感器安装在龙门上,提供了电极加载的Terahertz图像,并可以与光学图像进行直接比较,从而揭示了阴极上的缺陷。当比较通过Terahertz传感器获得的密度测量与实验室中测量的密度测量值时,我们达到了0.01 g/cm3的精度。关键字:ndt; Terahertz;光谱;电池电极;电动车辆此外,通过Terahertz系统的厚度测量与使用毫米在小于1 µm以内获得的厚度测量。同样,当比较通过Terahertz与通过四点探针测量的DC电导率进行比较时,趋势是一致的。正在进行的孔隙率进行的研究表明,折射率与特定电极集的功率相关,表明可能具有更广泛的应用。这种全面的方法证明了将Terahertz技术集成到电池电极制造过程中的重要优势,从而通过提高效率和降低浪费来彻底改变行业。
摘要 - 电位测量法和安培计量法是两种最常见的电化学传感方法。它们在常规上是在不同的时间进行的,尽管正在出现新的应用,这些应用需要同时在single电化学细胞中使用它们。本文研究了这种设置的可行性和潜在缺陷。,我们使用电位计量和安培传感器在单独使用时比较它们的输出信号,以及它们与共享的参考电极合并在一起时。我们的结果特别表明,具有共享参考电极的电位读数显示出高度相关性为0.9981与调用电位计量计。在安培传感的情况下,同时测量与单个测量的跨相关性为0.9959。更重要的是,我们还通过设计创新的测试系统的设计在存在细胞库的情况下同时证明了电位测量法的同时测量。这是通过测量变化的pH值和H 2 O 2的不同浓度来完成的,以展示电路的操作。
作者的完整清单:马丁内斯,天使;匹兹堡大学,工业工程克莱门特,J。;匹兹堡大学,朱芬;匹兹堡大学工业工程;匹兹堡科赫扎特大学,朱莉娅;匹兹堡大学,工业工程工程,莫赫森(Mohsen);匹兹堡大学,拉维工业工程工业工程;匹兹堡大学工业工程
图2。(a,b)从ANCRE报告124(允许)中提取的电力部门中的脱碳化楔形,并考虑了每个国家 /地区最雄心勃勃的场景; “全球范围”是指16个最著名的国家。这些直方图显示了在没有任何技术进化的情况下电力部门的发射轨迹,并且(灰色)在脱碳场景框架内发射的演变;两种核心对允许不同技术的降低(例如,黄色和橙色的太阳能,蓝色的水力)之间的差异; CCS意味着碳捕获和隔离。可以在参考文献126中找到“脱碳楔”方法的进一步描述。
摘要:干脑电图(EEG)系统的设置时间很短,需要有限的皮肤准备。但是,它们倾向于需要强的电极到皮肤接触。在这项研究中,通过将聚二酰亚胺的印刷电路板(FPCB)嵌入聚二甲基硅氧烷中,然后将它们施放在传感器模具中,用六个对称的腿或碰撞来制造具有低接触阻抗(<150kΩ)的干脑电图电极(<150kΩ)。银 - 氯化物糊用在必须触摸皮肤的每条腿或凹凸的裸露尖端上使用。使用FPCB使制造的电极能够保持稳定的阻抗。制造了两种类型的干电极:皮肤有限的皮肤电极和多条电极,用于常用和浓密的头发区域。阻抗测试。实验结果表明,制造的电极表现出65至120kΩ之间的阻抗值。用这些电极获得的脑波模式与使用常规湿电极获取的电极相当。基于ISO 10993-10:2010协议和基于ISO 10993-5:2009协议的细胞毒性测试,制造的EEG电极通过ISO 10993-10:2010协议通过了主要的皮肤刺激测试。
1 Sungkyunkwan大学(SKKU)的生物医学工程系,Suwon 16419,大韩民国。2神经科学成像研究中心,基础科学研究所(IBS),Suwon 16419,大韩民国。3 Sungkyunkwan大学(SKKU)的电气和计算机工程系,Suwon 16419,大韩民国。4韩国科学技术研究所生物医学研究中心,韩国共和国02792。5科学技术大学基斯特学院生物医学科学技术部,大韩民国首尔02792。6智能医疗保健融合,Sungkyunkwan University(SKKU),Suwon 16419,大韩民国共和国。7 Sungkyunkwan University(SKKU)的超级智能工程系,Suwon 16419,大韩民国。#作者同样贡献。
本报告描述了一个3D微电极阵列,该阵列集成在薄膜柔性电缆上,用于小动物的神经记录。微电极阵列制造过程整合了传统的硅薄膜处理技术,并通过两光片光刻在微分辨率下对3D结构进行直接激光写入。虽然之前已经描述过3D打印电极的直接激光写入,但该报告是第一个提供一种与微制作电气轨迹集成的高光谱比率激光写入的结构的方法。一个原型是一个16个通道阵列,该阵列由350 µm长的小腿组成,该柄在带有90 µm螺距的网格上。此处显示的其他设备包括仿生蚊子,这些蚊子穿透了鸟类的硬脑膜和多孔电极,旨在促进组织向内生长或增强神经刺激的电荷注入能力。这些设备只是一个新的设计空间的一些示例,它将启用具有可在单千分尺分辨率下定义的功能的高通道计数3D电极阵列。使用自定义激光作者,3D打印过程很快(1 mm 3 /min)。这种高速打印与标准的晶圆尺度工艺相结合,将实现有效的设备制造和新的研究,以研究电极几何形状和电极性能之间的关系。我们预计在小动物模型,神经界面,视网膜植入物和其他需要小密度3D电极的应用中会产生最大的影响。
摘要 - 多种阵列广泛用于神经记录,无论是在体内还是在体内培养的神经元中。在大多数情况下,记录位点是被动电极连接到外部读出电路的电极,电线的数量至少等于记录位点的数量。我们提出了一种使用石墨烯有源电极打破常规N线n-电极阵列结构的方法,该电极允许使用频率分割多路复用(FDM)在多个活动电极之间在记录位点进行信号上流转换以及每个接口电线的共享。提出的工作包括使用石墨烯FET电极,自定义集成电路(IC)Ana-log前端(AFE)和数字解调的频率调制和读取体系结构的设计和实施。AFE在0.18 µm CMOS中制造;提供电气表征和多通道FDM结果,包括基于GFET的信号调制和IC/DSP解调。长期,这种方法可以同时实现高信号计数,高度分辨率和高时间精度,以推断神经元之间的功能相互作用,同时显着降低了访问线。
