过渡金属基电极材料具有大的比表面积和多孔结构,可以为氧化还原反应暴露更多的电活性位点,并提供电极和电解质之间的大接触面积。18-20多级多孔纳米结构不仅提供更多的活性位点,而且还提供快速的电极/电解质相互作用和离子传输/电子交换,从而提高功率密度和倍率能力。21,22此外,基于对电荷存储机制的理解,探索了多价金属阳离子之间的协同效应。复合材料的组成协同作用可以使电极中的离子和电荷轻松转移,从而确保更丰富的氧化还原反应。 22 – 25此外,人们付出了巨大的努力来设计各种三元和四元过渡金属基电极,这些电极已被证明与单金属氧化物相比具有金属导电性、更丰富的氧化还原反应位点和电化学稳定性等显著优势。26 – 30最后,粉末状电极材料机械不稳定,其电导率通常太低,无法快速充电 – 放电。由于电解质扩散到电极中的距离短,只有材料表面对总电容有有效贡献。设计无添加剂的电极材料,直接在导电多孔基底上生长(如泡沫镍),不仅可以提高导电性和电极中电解质的丰富度,还可以提高电极的稳定性。
摘要:已经开发了各种干式脑电图 (EEG) 电极。干式 EEG 电极需要压在头皮上;因此,需要在保持低接触阻抗和保持舒适度之间进行权衡。我们提出了一种通过使用立体光刻 3D 打印机打印复杂形状的电极来解决这种权衡的方法。为了证明我们的方法的可行性,我们制作了带有弹簧的柔性手指(叉)的电极。虽然已经提出了带有柔性叉的干电极,但尚未获得合适的弹簧常数。在本研究中,我们电极的弹簧常数是根据电极和头皮之间的接触模型确定的。发现电极的机械性能和再现性足够。最后,我们测量了参与者使用我们的电极睁开/闭上眼睛时的 alpha 波。
在绿色和烧结状态的3D印刷电极上进行了三个弯曲测试。对经受热烧结步骤的优惠券的尺寸进行了缩放,以考虑收缩。根据ASTM C1161设计和测试了测试样品。测试是在具有100 N负载电池的通用仪器系统上进行的。使用等式计算弯曲强度。2,其中p是断裂力,l外部(支撑)跨度,b标本宽度和d样品厚度。
增加电极厚度是提高锂离子电池(LIB)能量密度的关键策略,这对于电动汽车和能源存储应用至关重要。然而,厚的电极面临着重要的挑战,包括离子运输差,长距离路径和机械不稳定性,所有这些都会降低电池的性能。为了克服这些障碍,引入了一种新型的微电场(𝝁 -EF)过程,从而增强了在制造过程中颗粒对齐的过程,并减少了阳极和阴极之间的距离。此过程产生的曲折度低和改善离子分歧的超厚(≈700μm)电极。𝝁 -EF电极实现高面积的能力(≈8mAh cm -2),同时保持功率密度和较长的循环寿命。在高C速率循环下,电极在2C处1000循环后保持结构完整性稳定,通过对厚电极制造的挑战的可扩展解决方案保持结构完整性,𝝁 -EF工艺代表了电动汽车和储能系统中高能力LIBS的显着进步。
1 复旦大学信息科学与技术学院智能医疗电子研究中心,上海 200433,中国;zhwang20@fudan.edu.cn (Z.W.); 22210720117@m.fudan.edu.cn (Y.D.); chenhongyudesign@outlook.com (H.C.) 2 中国科学技术大学生命科学与医学部生物医学工程学院创新医疗器械研究院智能医疗设备与器械研究中心,合肥 230026,中国 3 中国科学技术大学苏州高等研究院,苏州 215123,中国 4 悉尼大学生物医学工程学院,悉尼,新南威尔士州 2006,澳大利亚; wei.chenbme@sydney.edu.au 5 复旦大学人类表型组研究所,上海 201203,中国 * 通讯地址:wyuan2023@ustc.edu.cn (W.Y.); chenchen_fd@fudan.edu.cn (C.C.)
由于电动汽车的流行率上升,锂离子电池市场的稳定扩展产生了对开发低成本电池生产方法的需求,而环境影响较小。Zeon一直在开发一种用于干燥形成方法的技术,这是一种生产锂离子电极电极的创新方法。与常规的湿涂层方法* 1不同,新的干燥地层方法* 2不需要广泛的电极干燥过程,因此,预计它将以较低的资本投资减少CO 2排放。虽然某些商业生产过程已经结合了干燥的形成,但Zeon正在开发的干地层方法可以以等于或比湿涂层更快或更快的地层速度同时应用于阴极和阳极。该方法还可以使制造电极免受污染和多氟烷基物质(PFA)的污染,使其成为世界上第一个符合预期较严格的PFAS法规的世界第一个 *3个低环境影响技术。
1 ,瓦拉拉克大学,塔萨拉区222,塔萨拉区,泰国,泰国,泰国80160,泰国2个微系统化学分析(MINOS)纳米技术(MINOS) mubdiulislam.rizu@urv.cat 3科学技术学院的创意创新,科学技术学院,Nakhon Si Thammarat Rajabhat University,Nakhon Si Thammarat 80280,泰国; fahmida_tina@nstru.ac.th 4 4机械和电气工程学院,吉林电子技术大学,吉林541004,中国; zhaoling_huang@guet.edu.cn 5电气和计算机工程学院,德累斯顿,德累斯顿,德累斯顿,德累斯顿; anindya.nag@tu-dresden.de 6触觉互联网中心与人类融合(CETI),TechnischeUniversitätDresden,01069德累斯顿,德国7号,德国7号民用和机械工程学院,珀斯,珀斯,珀斯,华盛顿州6102,澳大利亚,澳大利亚,珀斯; nasrin.afsarimanesh@curtin.edu.au *通信:mdeshrat.al@mail.wu.ac.th或fealahi@gmail.com,瓦拉拉克大学,塔萨拉区222,塔萨拉区,泰国,泰国,泰国80160,泰国2个微系统化学分析(MINOS)纳米技术(MINOS) mubdiulislam.rizu@urv.cat 3科学技术学院的创意创新,科学技术学院,Nakhon Si Thammarat Rajabhat University,Nakhon Si Thammarat 80280,泰国; fahmida_tina@nstru.ac.th 4 4机械和电气工程学院,吉林电子技术大学,吉林541004,中国; zhaoling_huang@guet.edu.cn 5电气和计算机工程学院,德累斯顿,德累斯顿,德累斯顿,德累斯顿; anindya.nag@tu-dresden.de 6触觉互联网中心与人类融合(CETI),TechnischeUniversitätDresden,01069德累斯顿,德国7号,德国7号民用和机械工程学院,珀斯,珀斯,珀斯,华盛顿州6102,澳大利亚,澳大利亚,珀斯; nasrin.afsarimanesh@curtin.edu.au *通信:mdeshrat.al@mail.wu.ac.th或fealahi@gmail.com,瓦拉拉克大学,塔萨拉区222,塔萨拉区,泰国,泰国,泰国80160,泰国2个微系统化学分析(MINOS)纳米技术(MINOS) mubdiulislam.rizu@urv.cat 3科学技术学院的创意创新,科学技术学院,Nakhon Si Thammarat Rajabhat University,Nakhon Si Thammarat 80280,泰国; fahmida_tina@nstru.ac.th 4 4机械和电气工程学院,吉林电子技术大学,吉林541004,中国; zhaoling_huang@guet.edu.cn 5电气和计算机工程学院,德累斯顿,德累斯顿,德累斯顿,德累斯顿; anindya.nag@tu-dresden.de 6触觉互联网中心与人类融合(CETI),TechnischeUniversitätDresden,01069德累斯顿,德国7号,德国7号民用和机械工程学院,珀斯,珀斯,珀斯,华盛顿州6102,澳大利亚,澳大利亚,珀斯; nasrin.afsarimanesh@curtin.edu.au *通信:mdeshrat.al@mail.wu.ac.th或fealahi@gmail.com,瓦拉拉克大学,塔萨拉区222,塔萨拉区,泰国,泰国,泰国80160,泰国2个微系统化学分析(MINOS)纳米技术(MINOS) mubdiulislam.rizu@urv.cat 3科学技术学院的创意创新,科学技术学院,Nakhon Si Thammarat Rajabhat University,Nakhon Si Thammarat 80280,泰国; fahmida_tina@nstru.ac.th 4 4机械和电气工程学院,吉林电子技术大学,吉林541004,中国; zhaoling_huang@guet.edu.cn 5电气和计算机工程学院,德累斯顿,德累斯顿,德累斯顿,德累斯顿; anindya.nag@tu-dresden.de 6触觉互联网中心与人类融合(CETI),TechnischeUniversitätDresden,01069德累斯顿,德国7号,德国7号民用和机械工程学院,珀斯,珀斯,珀斯,华盛顿州6102,澳大利亚,澳大利亚,珀斯; nasrin.afsarimanesh@curtin.edu.au *通信:mdeshrat.al@mail.wu.ac.th或fealahi@gmail.com
代表着一种更可靠、更安全、生命周期更长的替代方案。通过湿纺技术成功获得了许多由石墨烯、碳纳米管、导电聚合物以及最近的 MXenes 制成的纤维,并研究将其作为可穿戴超级电容器的一维电极。[17–29] 然而,这些材料通常涉及复杂的合成程序、有害的分散剂溶剂或后处理步骤,以生产出具有足够机械阻力和电化学性能的纤维。芳族聚酰胺纳米纤维 (ANF) 最近被提议作为一种新的纳米级构建块来设计新的复合材料。[30] 与基于单体聚合的标准路线相反,ANF 可以通过自上而下的方法轻松快速地获得,通过溶解芳族聚酰胺聚合物链,然后通过溶液加工重新组装成宏观纤维或薄膜。[30,31] 芳族聚酰胺聚合物以其机械强度而闻名,但它不导电,必须负载导电填料才能实现电子传输。到目前为止,ANF 主要被研究用作聚合物增强体的填料[32,33]、多功能膜的基质[34–37]、隔热罩[38,39],甚至用作隔膜的添加剂和锂离子电池的固态电解质。[40,41] 然而,尽管 KNF 分散体具有良好的湿纺性,但人们对使用 ANF 来制造 FSC 却关注甚少。在之前的工作中,Cao 等人通过共湿纺核碳纳米管分散体和鞘 ANF 分散体制备了具有核壳结构的纤维。[42] 通过用 H3PO4/PVA 凝胶电解质渗透获得的对称 FSC 显示出高达 0.75 mF cm −1 的显著线性容量。Wang 等人将石墨烯纳米片 (GNPs) 加载到 ANF 分散体中,通过在水/乙酸溶液中凝固获得 ANFs/GNPs 复合线状电极。[43] 然而,他们的结果表明,GNPs 通过恢复对苯二甲酰胺单元之间的氢键干扰了 ANFs 的凝固,导致在 ANFs 基质中 GNPs 高含量时拉伸强度持续下降。在这项工作中,PEDOT:PSS@KNFs 复合纤维通过一个简单的两步工艺生产出来,包括将 Kevlar 纳米纤维化为 Kevlar 纳米纤维 (KNF)、KNF 纤维的湿纺以及随后浸泡在 PEDOT:PSS 水分散体中。以这种方式,由于导电的 PEDOT:PSS 链渗透而几乎保持 KNF 基质的机械阻力不变,因此获得了导电纤维。 PEDOT:PSS@KNF 纤维具有柔韧性、可编织、可缝纫等特点,通过耦合相邻的两根纤维,可以形成对称的 FSC。
摘要:在物联网黎明时,对于储能的三维电极,越来越重要。的心脏是大量的微电子设备,需要嵌入能量收割机和能量存储组件以确保自治。在这项研究中,我们通过简单的优化电沉积过程开发了多孔金属微观结构及其与新的Ruo X N Y S Z材料的共形涂层。带有纳米端网络的微孔结构显示出较高的面积电容(电极为14.3 f cm -2,全溶剂固定状态的微蛋白酶酸一小度为714 mf cm -2)和稳定的性能(5000个周期后保留> 80%)朝H +存储。也观察到具有高面积容量(5 mAh cm -2)和速率特征(3C时1.5 mAh cm -2)的显着LI +存储能力。这些结果加上便捷的合成策略,因此可以为微生物和微生物电容器大规模生产3D多孔电极提供灵感。
可再生和低成本材料的一种杰出来源是植物,已知并用作能源(通过燃烧)已有数千年的历史。最近发现,可以将含有氧化还原活性喹酮基团的植物衍生的材料用于电能储能。[4]最成功的例子之一是使用氧化还原活性喹酮和氢喹酮基团用于电荷存储设备中的木质素。[4C,5]然而,将木质素材料用于电力储存时,一个具有挑战性的方面是木质素的电绝缘性质。因此,需要使用导电材料才能访问大部分中的氧化还原主动奎因酮基团。在第一代木质素电极中完成了电子导体和木质素的亲密混合,[5a]在那里,在黑液的可溶性木质磺酸盐(LS)的情况下,将吡咯是聚合物的聚合物到多吡咯。ls是一种从纸和纸浆厂加工而得出的水溶性木质素。其他电子聚体也用于制备具有木质素作为电活性元件的杂种材料,包括电化学和化学方法。[5b]由于电子聚合物的不稳定性以及这些成本,这种组合没有提供长期且可扩展的低成本替代方案,用于充电存储。黑酒是纸张和纸浆加工的废品,是木制纤维素提取过程的结果,因此以低成本提供。[6]黑酒主要燃烧以产生加热,并用于恢复造纸厂的工艺化学品。然而,缺点是碱性/酸溶液和有机溶剂的常见用途,以便从木浆中提取和分离纤维素,从而使隔离工艺能量能量需求和环境危险。木质素的废物主要用作表面活性剂和分散剂,以及香草蛋白的来源。纸
