最近,人们尝试将能量收集和存储结合起来,制成用于自供电系统的光伏储能模块 (PESM)。13-15然而,外部电路通常用作集成器件中 PV 和电荷存储部分之间的互连,这会导致平面互连导致表面积利用率低,并且与柔性基板上的卷对卷印刷不兼容。探索具有高机械灵活性和光学透明度的设备以满足未来无处不在的电子产品(包括可穿戴设备和交互系统)的需求是一项挑战。16,17该领域的最终目标是通过印刷或卷对卷制造在垂直方向上开发高效、灵活、透明且低成本的 PESM。 18,19 因此,低温下实现的全溶液处理柔性 PESM 非常适合实现升级,并且具有成本效益。光伏设备中常用的透明电极是氧化铟锡 (ITO),它可以提供高透射率和低薄层电阻。然而,ITO 机械脆性大,
摘要 近年来,二次金属空气电池作为与可再生能源相结合的储能技术,受到了广泛关注。传统气体扩散电极中碳的氧化缩短了二次金属空气电池的寿命。用沸石代替碳基材料是解决这一问题的可能解决方案,这也是本文的目的。沸石是一种天然或合成的多孔材料,可提供必要的气体渗透性。通过按照专门开发的程序将沸石与适量的聚四氟乙烯混合,可确保电极具有所需的疏水性。实验是在自制的测试电池中进行的,该测试电池可确保在半电池和全电池配置中进行测量。在本研究中,测试是在带有氢参比电极的 3 电极自制半电池配置中进行的。电池分别在充电/放电电流 ±2 mA cm -2 下进行循环。所得结果表明,在气体扩散层中用沸石代替碳是优化气体扩散电极的一个有希望的方向。
开发具有更安全、更具成本效益的系统的高性能平面微电池对于为医疗植入物、微型机器人、微型传感器和物联网 (IoT) 等智能设备供电至关重要。然而,由于难以有效地将高容量活性材料加载到微电极上,目前的片上微电池在有限的设备占用空间内能量密度有限。片上微电池需要先进微电极的创新设计。这项工作引入了先进的、高度多孔的 3D 金 (Au) 支架基叉指电极 (IDE) 作为集电器,这能够有效地加载活性材料 (Zn 和聚苯胺),而不会影响整体导电性,并显著增加活性质量负载。这些基于 3D Au 支架的微电池(3D P-ZIMB)在材料加载到平面 Au IDE 上时,与传统微电池(C-ZIMB)相比,具有显著更高的能量存储性能(增强 135%)。此外,3D P-ZIMB 比大多数高性能片上微电池具有更高的面积容量(≈ 35 μ Ah cm − 2 )和面积能量(≈ 31.05 μ Wh cm − 2 ),并且它提供比高性能片上微型超级电容器高得多的面积功率(≈ 3584.35 μ W cm − 2 )。深入的事后调查显示,3D P-ZIMB 避免了材料剥落、电解质离子扩散缓慢和阳极上枝晶形成等问题,同时保持了相同的材料形貌和结构特征。因此,本研究提出了一种智能策略来提高平面微电池的电化学性能并推动片上微电池研究领域的发展。
用于储能的电极已经在学术界和行业中以各种方式进行了古典准备,例如老虎机涂层或泥浆铸造。2在这些方法中,电极材料被分散/溶解在溶剂中以形成粘性浆,并在涂层和溶剂蒸发后获得膜。尽管如此,优化厚度控制或膜组装效率并不容易。此外,由于在纳米颗粒的有效分散剂中缺乏控制剂,因此在准备纳米颗粒的粘液糊状糊状物中缺乏控制,导致纳米颗粒的有效分散,导致不利的凝聚力。这主要适用于化学方法和热方法的情况,这些方法容易掺入具有不必要的忠诚的活性材料,从而降低电极性能。17,18
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
已经开发出一种基于丙酮的从锂离子电池电极中回收聚偏氟乙烯 (PVDF) 的工艺。首先使用丙酮溶解 PVDF 粘合剂,然后将电极材料在丙酮中搅拌以使其与集电器分层。电极分离成电极材料、PVDF 粘合剂和集电器。测量了 PVDF 在丙酮中的溶解度与温度的关系,发现溶解度随温度升高而增加,在 150 ◦ C 左右达到最大值。测量了纯态和电极中 PVDF 的溶解速率与温度的关系。前者比后者快得多。对 PVDF 从电极中扩散的情况进行了数学建模,以预测材料回收的时间。该研究表明,通过从锂离子电池中回收 PVDF、电极材料和集电器,可以建立直接回收工艺。
摘要:干脑电图(EEG)系统的设置时间很短,需要有限的皮肤准备。但是,它们倾向于需要强的电极到皮肤接触。在这项研究中,通过将聚酰亚胺柔性印刷电路板(FPCB)部分嵌入聚二甲基硅氧烷中,然后将它们施放在具有六个对称的腿或肿块的传感器模具中,从而制造具有低接触阻抗(<150kΩ)的干脑电图电极(<150kΩ)。银 - 氯化物糊用在必须触摸皮肤的每条腿或凹凸的尖端上。使用FPCB使制造的电极能够保持稳定的阻抗。制造了两种类型的干电极:皮肤的平盘电极,头发有限,多型电极用于常用和浓密的头发区域。阻抗测试。实验结果表明,制造的电极表现出65至120kΩ之间的阻抗值。用这些电极获得的脑波模式与使用常规湿电极获取的电极相当。基于ISO 10993-10:2010原始Col和基于ISO 10993-5:2009协议的细胞毒性测试,基于ISO 10993-10:2010原始Col的原发性皮肤刺激测试通过了主要的皮肤刺激测试。
免责声明本文件是作为由美国政府机构赞助的工作的帐户准备的。美国政府和劳伦斯·利弗莫尔国家安全,有限责任公司,或其任何雇员均不对任何信息,设备,产品或流程的准确性,完整性或有用性承担任何法律责任或责任,或承担任何法律责任或责任,或者代表其使用不会侵犯私有权利。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或Lawrence Livermore National Security,LLC的认可。本文所表达的作者的观点和意见不一定陈述或反映美国政府或劳伦斯·利弗莫尔国家安全,有限责任公司的观点和观点,不得用于广告或产品代表目的。
摘要 - 脑电图是一种强大且负担得起的大脑感测和成像工具,用于诊断神经系统疾病(例如癫痫),大脑计算机接口和基本神经科学。不幸的是,大多数脑电图电极和系统的设计并非旨在适应非洲血统中常见的粗卷发。在神经科学研究中,这可能导致质量差的数据,这些数据可能在从更广泛的人群中记录后可能会在科学研究中丢弃。 在临床诊断中,这可能导致不舒服和/或情感上的征税经验,在最坏的情况下,误诊。 我们先前的工作表明,在玉米裂片中辫子在目标位置暴露头皮会导致现有电极的电极阻抗降低。 在这项工作中,我们设计和实施了利用编织头发的新型电极,并证明,随着时间的推移,我们的电极与编织在一起,降低阻抗,使阻抗的阻抗低于现有系统。在神经科学研究中,这可能导致质量差的数据,这些数据可能在从更广泛的人群中记录后可能会在科学研究中丢弃。在临床诊断中,这可能导致不舒服和/或情感上的征税经验,在最坏的情况下,误诊。我们先前的工作表明,在玉米裂片中辫子在目标位置暴露头皮会导致现有电极的电极阻抗降低。在这项工作中,我们设计和实施了利用编织头发的新型电极,并证明,随着时间的推移,我们的电极与编织在一起,降低阻抗,使阻抗的阻抗低于现有系统。
