随着迅速扩大的电动汽车(EV)市场,由于与常规的锂离子电池(LIBS)相比,由于其固有的优势和高能量密度的固有优势,迫切需要开发全稳态的LI电池(ASSB)。1将无机固体电解质(SES)作为必不可少的组件掺入可以利用Li金属阳极和高能量密度阴极,从而增加了能量密度。2领先的Sul sulsulese材料,例如Li 9.54 SI 1.74 P 1.44 S 11.7 Cl 0.3和Li 6.6 Si 0.6 SB 0.6 SB 0.5 S 5 I,在室温下在10 ms-cm-1上实现了极高的LI +电导率,在室温下,使用这些材料在室温下具有出色的液体效果,证明其具有杰出的液体性能与它们的液体效果相比可比性。3,4此外,sulsulsEs具有显着的低杨氏模量,可在室温下易于容易。5
目录 页码 执行摘要 4 关于作者 5 简介 5 • 本评论的重点 • 固态 / 半固态锂离子电池组件 • 当今的固态 / 半固态锂离子电池市场 • (预计)市场发布 – 固态 / 半固态锂离子电池电动汽车 基于人工智能的商业相关专利识别 12 • 自 2019 年以来的商业相关专利系列 / 实用新型数量 技术决策树 30 • 固体电解质 – 类型 – 已推出或即将推出市场 • 固体电解质 – 类型 – 根据专利申请 • 固体电解质 – 概念 • 固体电解质 – 不含磷的氧化物 – (可能)结晶 • 固体电解质 – 磷酸盐 / 含 P 的氧化物 – (可能)结晶 • 固体电解质 – 氧化物 / 磷酸盐 – (可能)玻璃 • 固体电解质 – 氢氧化物 • 固体电解质 –硫化物•固体电解质 – 减缓硫化氢排放•固体电解质 – 聚合物•固体电解质 – 卤化物 / 氧卤化物•薄膜电池用固体电解质•固体电解质 – 硼烷•锂(钠)盐•增塑剂•液体电解质组分 / 液体添加剂•固体电解质添加剂 / 不含锂的支撑和填充材料•固体电解质粘合剂•负极活性材料•正极活性材料•负极添加剂•正极添加剂•负极粘合剂•正极粘合剂
摘要:在一个越来越相互联系的世界中,电子设备渗透到我们生活的各个方面,旨在监视生理信号的可穿戴系统正在迅速接管运动和实力领域,以及康复和康复等生物医学领域。目的是为该领域提供新颖的方法,在本文中,我们讨论了可穿戴系统的开发,用于根据可移植的,低功耗的自定义PCB的特定使用,该系统设计用于与非惯用性的超易于良好的超透明和可强调的Parylene-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c-c tattoo tattoo tattoo tattoo tattoo tattoo tattoo tattoo tattoo tattoo tattoo tattoo tattoo tattoo Electrodes。已在标准的休息状态实验中测试了所提出的系统,并且将其在两个不同状态的歧视方面与商业可穿戴设备的歧视(即穆斯耳机)进行了比较,显示出可比的结果。这一第一个初步验证表明,可以方便地采用可方便的可容纳纹身纹身电极集成了便携式系统,以使大脑活动的不可思议。
MXenes 是一种寿命长达十年的陶瓷材料,于 2011 年在德雷塞尔大学首次发现 1 。它们的通式为 M n +1 X n T x , (n=1,2,3) ,其中 T 是表面终止原子,M 是早期过渡金属,X 是 C 或 N 2-4 ,MXenes 直接从其相应的 MAX 相蚀刻而成。后者是层状碳化物或氮化物结构,公式为 M n +1 AX n , (n=1,2,3) ,其中 A 是元素周期表 A 族元素,通常是第 13 或 14 族。在图 1 中,我们可以看到元素周期表中 MAX 相和 MXenes 的成分以及它们的结构。具有 OH 或 F 终端的碳化钛 Ti 3 C 2 是从钛铝 MAX 相 Ti 3 AlC 2 1 中发现的第一个 MXene。由于 Ti 3 C 2 T x MXene 仍然最具导电性 6–8,文献中对其在二次(即可充电)电池中的应用潜力进行了广泛研究。为此,人们试图通过操纵终端原子 8,9 来控制其电子和机械性能。可充电离子电池是一种基于离子插入的储能装置 10。通常,离子电池由阴极(正极)和阳极(负极)组成,并与含有离子的电解质接触。两个电极由微孔聚合物膜(隔膜)隔开,该膜阻止电子与离子一起在它们之间穿过 11。商用电池单元通常是在放电状态下生产的,而阳极和阴极电极在与大气接触时需要保持稳定 11。充电时,电极需要连接到外部电源,而电池
微生物生物传感器可以是用于毒性监测的经典方法的绝佳替代方法,这些方法耗时且灵敏。但是,细菌通常通过生物膜形成连接到电极,从而导致问题由于缺乏统一性或较长的装置生产时间而引起的问题。合适的固定技术可以克服这些挑战。仍然,它们的响应可能比基于生物纤维的电极更慢,因为在生物膜期间细菌逐渐适应电子转移。在这项研究中,我们提出了一种可控且可再现的方法来制造细菌模化的电极。该方法由使用纤维素基质的固定步骤组成,然后在存在铁酰胺和葡萄糖的情况下进行电极极化。我们的过程简短,可重现,并使我们获得具有高电流响应的现成电极。固定的电化学活性细菌的出色保存期长达一年。在第一个月最初的50%活动损失后,在接下来的11个月中未观察到进一步下降。我们实施了细菌模化的电极,以使用甲醛(3%)制造一个用于毒性监测的侧向流平台。其添加导致有毒输入后约20分钟的电流减少59%。此处介绍的方法具有发展高灵敏度,易于产生和长长的货架生物生物细菌毒性探测器的能力。©2020作者。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
燃料电池可能是将燃料转化为电能的最有效、最清洁的方式之一,因为它们避免了化学能转化为热能和热能转化为机械能的步骤。固体氧化物燃料电池 (SOFC) 是一种燃料电池,通常在 500 至 1000 C 之间运行。SOFC 中使用的标准材料是:氧化钇稳定氧化锆 (YSZ) 作为电解质,镍 - YSZ 金属陶瓷作为燃料电极,镧锶锰氧化物 (LSM) - YSZ 复合材料作为氧电极。1 尽管针对三种主要组件中的每一种都提出了多种具有增强初始性能的新型材料选择,但上述标准材料仍然是首选,因为它们在长期运行中具有耐用性。 2 例如,其他氧电极材料如镧锶钴铁氧体 (LSCF) 存在一些缺点,包括化学反应性和由于热膨胀系数 (TEC) 与标准 YSZ 的差异而导致的匹配性差。为此,已经提出了各种策略来改进标准氧电极。对于 LSM/YSZ 电极,YSZ 在中温 (IT) 范围 (700 C) 内的电导率相对较低,而 LSM 在此 IT 范围内主要是高极化电阻,限制了标准 SOFC 组件在 800 C 以下工作温度下的使用。为了降低基于 LSM - YSZ 的电池的工作温度,已经成功提出了选择性浸渍/过滤溶液基前体以形成纳米颗粒催化剂
图 3. 微生物全细胞生物电子装置的电化学分析。使用 (a) 裸 ITO 玻璃和 (b) PEDOT:PSS/PHEA 涂层工作电极对生物和非生物电化学反应器进行计时电流测量。插图显示非生物电流密度。反应器接种了 S. oneidensis 以进行生物测量,虚线标记。非生物测量包含培养基。电化学反应器的工作电极平衡在 +0.2 V vs Ag/AgCl,并使用 20 mM 乳酸作为 S. oneidensis 的碳源。在 43 小时的计时电流实验后,在 (c) 裸 ITO 玻璃和 (d) PEDOT:PSS/PHEA 涂层电极上对生物和非生物样品的循环伏安图(扫描速率:10 mV s -1)。
摘要:渗出是静脉内(IV)插管的并发症,其中囊泡药从静脉泄漏到周围的皮下组织。渗出的严重程度取决于积累在皮下组织中的药物的类型,浓度和体积。快速检测到渗出可以促进迅速的医疗干预,最大程度地减少组织损伤并防止不良事件。在这项研究中,我们提出了两个便携式传感器斑块,即黄金和碳的感应贴片,用于早期检测到渗出。在体内动物模型和人类临床试验中,基于黄金的传感器斑块检测到的量表低至2 ml的额外流体;该贴片的阻力变化为41%。对于2 mL的额外流体,碳基贴片表现出51%的电阻变化,而与基于金的感应贴片相比,该斑块的制造吞吐量和成本效益优越。
通过利用人体的先天修复机制,研究人员的方法代表了治疗神经系统疾病的潜在一步,这是全球残疾的主要原因。虽然神经系统疾病通常会导致不可逆的细胞损失,刺激NPC(能够修复神经组织的可培养细胞)在扩大有限的治疗方案时表现出了希望。
燃料电池可能是将燃料转化为电能的最有效、最清洁的方式之一,因为它们避免了化学能转化为热能和热能转化为机械能的步骤。固体氧化物燃料电池 (SOFC) 是一种燃料电池,通常在 500 至 1000 C 之间运行。SOFC 中使用的标准材料是:氧化钇稳定氧化锆 (YSZ) 作为电解质,镍 - YSZ 金属陶瓷作为燃料电极,镧锶锰氧化物 (LSM) - YSZ 复合材料作为氧电极。1 尽管针对三种主要组件中的每一种都提出了多种具有增强初始性能的新型材料选择,但上述标准材料仍然是首选,因为它们在长期运行中具有耐用性。 2 例如,其他氧电极材料如镧锶钴铁氧体 (LSCF) 存在一些缺点,包括化学反应性和由于热膨胀系数 (TEC) 与标准 YSZ 的差异而导致的匹配性差。为此,已经提出了各种策略来改进标准氧电极。对于 LSM/YSZ 电极,YSZ 在中温 (IT) 范围 (700 C) 内的电导率相对较低,而 LSM 在此 IT 范围内主要是高极化电阻,限制了标准 SOFC 组件在 800 C 以下工作温度下的使用。为了降低基于 LSM - YSZ 的电池的工作温度,已经成功提出了选择性浸渍/过滤溶液基前体以形成纳米颗粒催化剂
