摘要 — 为了在这个日益脆弱的世界中保护共同的文化遗产、个人自由和法治,民主国家必须能够在必要时“以机器速度”保卫自己。因此,人工智能在国防中的使用包括负责任的武器交战以及后勤、预测性维护、情报、监视或侦察等军事用例。这就提出了一个永恒的问题:如何根据公认的事实做出正确的决定?为了找到答案,负责任的可控性需要转化为系统工程的三个任务:(1)以人类在心理和情感上能够掌握每种情况的方式设计人工智能自动化。(2)确定技术设计原则,以促进人工智能在国防中的负责任使用。(3) 保证人类决策者始终拥有充分的信息、决策和行动选择优势。这里为防空提出的道德人工智能演示器 (E-AID) 正在铺平道路,让士兵尽可能真实地体验人工智能在瞄准周期中的使用以及相关的压力方面。
航天器发射器用于将有效载荷和机组人员运送到低地球轨道和地球同步转移轨道。有效载荷放置在发射器的整流罩内。不同的国家使用不同的发射器,每个发射器都有不同的振动和热要求。美国使用 Delta IV、Atlas V、Falcon 9 和 Falcon Heavy。俄罗斯使用 Zenit 发射器。欧洲使用 Vega 和 Ariane 5,中国使用 CZ5。每个发射器都有不同的振动、热和尺寸要求,卫星必须满足这些要求才能安全地将其发射到太空。有限元分析将对卫星的给定要求进行建模,以确定应使用的发射器。卫星的形状和大小各不相同,而且从来都不是相同的。对结构振动和热要求进行建模对于保护有效载荷和发射器非常重要。
四年级语言艺术课程以印第安纳州英语/语言艺术学术标准为基础,是综合教学,强调阅读基础、理解、写作以及在适合兴趣和年龄的内容中的沟通和协作。学生继续积累阅读和写作词汇量。通过讨论、写作、艺术、音乐和动作以及戏剧,学生可以对日益复杂的文本做出回应。学生口头总结他们读过的文章和书籍。写作过程用于作文发展。学生撰写多段叙述、信息性和说服性作文,并开始使用引语或对话来吸引读者的注意力。学生在书面交流中使用标准英语的惯例。学生聆听大声朗读或口头演示的文本,并独立写作以表明理解。
特性由阵列的孔径决定。但是,由于稀疏阵列中的元素数量减少,平均旁瓣电平高于相同孔径的全采样阵列的预期值。假设主瓣幅度为 M,正如预期的那样,对于一个由 M 个标准化和完全局部化的元素组成的阵列,每个元素在主响应轴方向上贡献一个同相矢量。然而,在远离主响应轴的给定方向上,由于元素位置随机,矢量并不同相,而是表现出统计随机相位。单位矢量与随机相位相结合,产生一个均方根 (rms) 幅度为 rm 的旁瓣电平。因此,对于随机阵列,平均旁瓣与主瓣的功率比为 M/MI = 1/M (Lo, 1964, 1965)。
SMART 目标:到 2020 年 5 月、到 2020 年 6 月,通过 I Ready 年终诊断衡量,90% 的中心学校 1-4 年级学生的阅读和数学成绩将以典型的年度增长方式提高,处于风险范围内的学生比例将从 10%(ELA)和 13%(数学)下降到 2%。到年底的 I Ready 评估中,处于风险范围内的学生将至少增加 25 个增长点。策略 1:90% 的学生的阅读成绩将以典型的年度增长方式提高,处于风险范围内的学生比例将从 10% 下降到 2%。到年底的 iReady 评估中,处于风险范围内的学生将显示出 25 分的增长。
IEEE 是一家非盈利组织,是世界上最大的技术专业组织,致力于推动技术进步,造福人类。© 版权所有 2023 IEEE - 保留所有权利。使用本网站即表示您同意条款和条件。
Ametek,威斯巴登 Aptiv,伍珀塔尔 BASF Coatings,明斯特 Block Materialprüfungsgesellschaft,柏林 BP,波鸿 Bruker Nano,柏林 联邦刑事警察局,威斯巴登 Carl von Ossietzky 奥尔登堡大学 Carl Zeiss Jena,上科亨 CleanControlling,埃明根-利普廷根 Conti Temic 微电子,因戈尔施塔特 CRB 分析服务,哈德格森 Currenta,勒沃库森 CVUA-RRW,克雷费尔德 D&I-Vallourec 研究中心,法国 Aulnoye-Aymeries DePuy Synthes,奥伯多夫 Dr. Graner & Partner,慕尼黑 EFI 服务,布达佩斯 EnBW Kernkraft,菲利普斯堡 Felix Schoeller,奥斯纳布吕克 苏黎世法医研究所 柏林研究协会 弗劳恩霍夫硅酸盐研究所 ISC,维尔茨堡 研究发展基金会 - FUNDEP,贝洛奥里藏特 汉诺威莱布尼茨大学 GSI,柏林 HARTING,埃斯珀尔坎普 Henkel,杜塞尔多夫 Heraeus Germany,哈瑙 Hirschmann Automotive,兰克韦尔 阿伦大学 普福尔茨海姆大学 IfW,埃森 INDIKATOR,伍珀塔尔 Infineon Technologies,慕尼黑工程协会 Meyer & Horn-Samodelkin 显微镜实验室,罗斯托克 德累斯顿腐蚀防护研究所 麦德林大都会技术学院,麦德林 集成微电子学,Biñan JOMESA 测量系统,Ismaning Kronos,勒沃库森 实验室 Dr.舍夫纳(Schäffner),索林根实验室克奈斯勒(Kneißler),布尔格伦根费尔德(Burglengenfeld)下萨克森州刑事警察局,汉诺威
承认水系统可能会采取气候弹性活动的多样性,本节提供了一种解决RCW 43.20.310要求的一般方法,并共享可用于评估和应对其系统具体挑战的水系统的资源。本节中概述的方法是按照美国的“弹性步骤”框架进行建模的气候弹性工具包(图1),并结构与RCW 43.20.310中的A-C保持一致。气候弹性元素(CRE)工作簿(链接)1,2和其他资源可用于支持水系统以满足本节的要求。华盛顿大学气候影响小组(CIG)“水系统计划资源”网页(链接)包括指向支持气候弹性计划的其他资源的链接。