简介:元素丰度在陨石的组成矿物之间会进行分馏,即使是化学性质非常相似的稀土元素 (REE) 也是如此。先前的研究表明,亲石元素,特别是难熔亲石元素,在其母体的热变质过程中从原生相重新分布到次生相 [1-3]。然而,由于矿物颗粒尺寸相对较小(< 50 μm)且矿物中夹杂物(< 10 μm),因此,对于在母体中经历了水蚀变的碳质球粒陨石 (CC),这种重新动员(包括它们的元素分布,尤其是微量元素)的了解甚少 [4]。因此,我们开发了使用激光剥蚀电感耦合等离子体飞行时间质谱 (LA-ICP-TOF-MS) 进行定量元素映射的分析方法,不仅可以提供主要元素图,还可以提供具有大表面积 (cm × cm)、高空间分辨率 (5×5 μm/像素) 的微量元素图,并且对后续分析的表面影响可以忽略不计 [5]。这种元素映射已被证明是一种确定 H 球粒陨石中元素分布的有效工具,然后应该适用于由带有包裹体的小矿物颗粒组成的 CC。因此,在本研究中,我们旨在将 LA-ICP-TOF-MS 映射应用于 CM 球粒陨石 (CM),这是最丰富的 CC,显示出从几乎 3 型到 1 型的各种变质程度,以确定 (i) 组成矿物中的元素丰度,(ii) 最富含特定元素的相,以及 (iii) 组成矿物之间的元素分布,这可能揭示母体水蚀变过程中元素的重新动员,并有助于限制水蚀变的物理化学条件。
混合有机 - 无机卤化物钙钛矿的太阳能电池近年来引起了人们的兴趣,这是由于其对限制和空间应用的潜力。对接口的分析对于预测设备行为和优化设备体系结构至关重要。研究掩埋界面的最先进的工具本质上具有破坏性,并且可能导致进一步的退化。离子束技术,例如Rutherford反向散射光谱法(RBS),是一种有用的非破坏性方法,用于探测多层钙钛矿太阳能电池(PSC)的元素深度谱以及研究各个接口跨接口物种的各种元素之间的相互膨胀。此外,PSC正在成为空间光伏应用的可行候选者,研究其辐射诱导的降解至关重要。RB可以同时利用它们在空间轨道中的存在,分析设备上He + Beam引起的辐射效应。在当前工作中,使用2 meV He +梁来探测具有构建玻璃 /ito /ito /iTO /sno 2 /cs 0.05(MA 0.17 fa 0.83)0.95 pb(I 0.83 BR 0.17)3 /sipo-houso-houso-obso-soptAd /moo 3 /moo 3 /au。在分析过程中,设备活性区域暴露于高达1.62×10 15 He + /cm 2的辐射,但尚未观察到梁诱导的离子迁移的可测量证据(深度分辨率约为1 nm),暗示PSC的高放射耐受性。另一方面,年龄的PSC在设备的活动区域中表现出各种元素物种的运动,例如Au,Pb,in,Sn,Br和I,在RBS的帮助下进行了量化。
摘要:激光粉末定向能量沉积工艺是一种金属增材制造技术,可制造具有高度几何和材料灵活性的金属零件。原位送粉的独特特性使得在制造过程中使用元素粉末混合物定制元素组成成为可能。因此,它可以潜在地应用于低成本合成工业合金、用不同的粉末混合物改性合金以及使用元素粉末混合物作为原料设计具有位置相关特性的新型合金。本文概述了使用激光粉末定向能量沉积方法通过供给元素粉末混合物来制造各种类型的合金。首先,详细描述了激光粉末定向能量沉积在制造金属合金方面的优势。然后,回顾了通过多种类别的元素粉末混合通过激光粉末定向能量沉积制造合金的最新研究和发展情况。最后,讨论了未来发展中的关键技术挑战,主要是成分控制。
氮化物材料中的氮掺杂是改善材料特性的一种有希望的方法。的确,GESBTE相位变化合金中的N掺杂已证明可以极大地提高其无定形相的热稳定性,这是确保最终相变存储设备的数据保留所必需的。尽管建议这种合金中的N掺杂导致GE-N键的优先形成,但有关键的进一步问题,尤其是SB-N和TE-N,并且结构排列尚不清楚。在本文中,我们介绍了使用大量的N含量从0到50 at at 50 at,我们介绍了沉积的元素GE,SB和TE系统及其氮化物(即Gen,SBN和10合金)的研究。%。通过傅立叶变换红外和拉曼光谱法研究了AS沉积合金。我们确定与GE-N,SB-N和TE-N键形成相关的主动振动模式,强调了N融合对这些元素系统结构的影响。我们进一步定性地将Gen,SBN和十个实验光谱与相关理想氮化物结构的“从头开始”进行了比较。最后,对氮化元素层的分析扩展到N掺杂的GESBTE合金,从而在记忆技术中采用的此类三元系统中对氮键有更深入的了解。
1 波兰 AGH 科技大学物理与应用计算机科学学院,Al. Mickiewicz 30, 30-059 克拉科夫;Karolina.Planeta@fis.agh.edu.pl(KP);Natalia.Janik-Olchawa@fis.agh.edu.pl(NJ-O.)2 波兰雅盖隆大学动物学和生物医学研究所,Golebia 24, 31-007 克拉科夫;Zuzanna.Setkowicz-Janeczko@uj.edu.pl(ZS);K.Janeczko@uj.edu.pl(KJ)3 卡尔斯鲁厄理工学院同步辐射应用实验室,Kaiserstr. 12, D-76131 卡尔斯鲁厄,德国;Czyzycki@kit.edu(MC); Tilo.Baumbach@kit.edu (TB) 4 雅盖隆大学生物化学生物物理与生物技术学院,Golebia 24, 31-007 克拉科夫,波兰;Damian.Ryszawy@uj.edu.pl 5 卡尔斯鲁厄理工学院光子科学与同步辐射研究所,Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen,德国;R.Simon@kit.edu * 通讯地址:Joanna.Chwiej@fis.agh.edu.pl † 上述作者对本研究贡献相同。‡ 作者遗憾地宣布,年轻的科学家、我们的好朋友 Damian Ryszawy 在本文最终准备好之前突然去世。
EELS 技术已应用于材料科学,以单原子灵敏度绘制元素图谱 5–7,并应用于生物科学,以检测和量化多种内源性元素。8–11 EELS 技术可应用于透射电子显微镜 (TEM) 模式,通常称为能量过滤 TEM (EFTEM) 12–16,或应用于扫描透射电子显微镜 (STEM) 模式,称为 STEM-EELS 或 EELS 光谱成像。17–22 虽然 EFTEM 模式的灵敏度低于 STEM-EELS,但它提供的视野更大,至少大一个数量级,通常为 105–107 像素,而 STEM-EELS 为 103–105 像素。 10,17 对于某些生物应用,更宽广的视野与分辨率或灵敏度同样重要,例如使用彩色 EM 电子探针同时标记细胞中的多种细胞蛋白质/细胞器。23–25 在我们开发的方法中,通过依次沉积与二氨基联苯胺结合的特定镧系元素螯合物来实现多个目标分子的定位,这些螯合物被正交光敏剂/过氧化物酶选择性氧化。23 然后将通过 EFTEM 模式获得的镧系元素的芯损耗或高损耗(M 4,5 边缘)元素图/图以伪彩色叠加到常规电子显微照片上以创建彩色 EM 图像。23,26,27
抽象目的 - 本文的目的是研究使用激光粉末床融合(LPBF)制造的镍含量(NITI)部分对镍含量(NITI)部分的均匀性的影响。此外,已经研究了制造参数和不同的熔融策略的影响,包括多个重新粘贴周期,可打印性和宏缺陷,例如孔隙和裂纹形成。设计/方法/方法 - 使用LPBF工艺来制造元混合粉末的NITI合金,并通过使用重新制定的扫描策略来评估改善制造标本的均匀性。此外,还使用了单一熔体和最多两个遥控器。发现 - 结果表明,重新升压可能对改善密度以及化学和相组成均匀化是有益的。扫描电子显微镜中的反向散射电子模式显示,在没有粘合的Ni和Ti元素粉末的情况下,响应增加了遥远的数量。所研究熔体的NITI零件的微值值相似,范围为487至495 HV。尽管如此,观察到的测量误差会随着遥控器的增加而降低,表明化学和相组成均匀性的增加。然而,X射线衍射分析揭示了多个阶段的存在,而与熔体运行的数量无关。独创性/价值 - 首次使用了作者的知识,使用重新放置扫描策略,通过LPBF制造了基本混合的NITI粉末。
鳗鱼技术已应用于材料中,以绘制单个原子敏感性5-7和生物科学的映射元素,以检测和量化许多内部元素。8–11鳗鱼技术可以在透射电子显微镜(TEM)模式中应用,通常称为能量过滤TEM(EFTEM)12-16或扫描透射透射电子显微镜(STEM)模式,称为Stem-Eels或EELS Spectrum-Imimiganging。17–22尽管EFTEM模式的灵敏度低于Stem-Eels,但它提供了更大的视野,至少要大的数量级,通常为10 5 –10 7像素,而茎 - 茎中的10 3 –10 5像素。10,17对于某些生物学应用,更包含的视野与分辨率或灵敏度一样重要,就像将颜色EM电子探针应用于同时在细胞中标记多个细胞蛋白/细胞器的情况一样。23–25在我们开发的方法中,多个靶向分子的定位是通过序列沉积与二氨基苯胺结合的序列沉积来实现的,二氨基苯胺被正交光泽剂/过氧化物酶选择性地氧化。23然后,通过EFTEM模式获得的LAN比的核心损坏或高损坏(M 4,5边)元素图/地图在伪色中叠加在传统的电子显微照片上,以创建颜色的EM图像。23,26,27
Elemental 的石墨烯是乱层石墨烯,即层间相互作用较低的多层石墨烯,这意味着层堆叠遵循一定的旋转角度,从而产生错位。乱层石墨烯相互作用点较少,因此其特性和功能与单层石墨烯相似。
– – JTBAKER ® ULTREX ™ II 酸可用于对多达 65 种元素进行关键元素分析,含量低于 10 万亿分之一 (ppt) – – JTBAKER ® BAKER INSTRA-ANALYZED ™ Plus 酸可用于元素分析,在极低 ppb 范围内对多达 64 种金属进行测试 – – JTBAKER ® BAKER INSTRA-ANALYZED ™ 酸可用于元素分析,在低 ppb 范围内对多达 35 种金属进行测试 – – JTBAKER ® BAKER ANALYZED ™ ACS 试剂级酸符合或超过 ACS 规格,并提供卓越的质量和价值
