目录1。Introduction ............................................................................................................................. 6 2.Scope ....................................................................................................................................... 6 3.Definitions ............................................................................................................................... 8 4.Part A: Preclinical data requirements .................................................................................... 11 4.1.New drug applications ....................................................................................................... 11 4.2.New generic drug application ............................................................................................ 12 4.3.Impurities ........................................................................................................................... 13 4.3.1.Qualification of Organic Impurities ............................................................................... 13 4.3.1.1.Mutagenicity Assessment of Impurities ..................................................................... 14 4.3.2.Qualification of Residual Solvents and Elemental Impurities ....................................... 14 5.Part B: Writing Guide for Non-clinical Study Reports ......................................................... 15 5.1.Documents Format ............................................................................................................. 15 5.3.非临床书面和列表摘要...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................非临床研究报告.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................Appendices ............................................................................................................................ 22
仅用于一般实验室。不适用于诊断程序。©2022 Thermo Fisher Scientific Inc.保留所有权利。Clinmass和食谱是食谱化学品 +仪器GmbH的商标。元素科学是元素科学的商标。所有其他商标都是Thermo Fisher Scientific及其子公司的财产。TN000598-EN 0322S
不。任何疫苗中都不含元素汞。元素汞在环境中会形成甲基汞。甲基汞是一种毒素,可在鱼类和海鲜中生物累积。乙基汞是硫柳汞中的一种化合物。与甲基汞不同,乙基汞很容易从体内排出。乙基使它成为与甲基汞完全不同的化学物质。2001 年,除多剂量流感疫苗外,所有儿童疫苗中均不含硫柳汞。
编号元素汞从未在任何疫苗中。元素汞在环境中形成甲基汞。甲基汞是一种可以在鱼类和海鲜中生物占用的毒素。乙酰汞是锡莫拉索中的一种化合物。与甲基汞不同,乙基汞很容易从体内消除。乙基组使其与甲基汞完全不同。在2001年,除多蛋白流感疫苗外,将Thimerasol从所有儿童疫苗中取出。
图S8。fesem图像(c)c,(c)c,(d)o,(e)p,(e)p,(f)ag,(g)v,(g)v,(h)W。fesem rpom-cv3 at(i)较低和(i)较低和(j)较高的eDx元素(e edx元素)(k)(k)(k)o, (o)V,(P)W。
在这一年中,原住民权利持有者继续在推动我们的能源转型方面发挥更加突出的作用。双方达成协议,开发 200 兆瓦的 Bekevar 风能设施,由加拿大可再生能源系统公司和考斯塞斯原住民的全资实体 Awasis Nehiyawewini 能源开发公司牵头。与此同时,两个公用事业规模的太阳能项目正在开发中:由乔治戈登原住民、Star Blanket Cree 原住民和 Natural Forces 联合开发的 10 兆瓦的 Pesâkâstêw 太阳能设施,以及由考斯塞斯原住民和 Elemental Energy 联合开发的 10 兆瓦的 Awasis 太阳能设施。
图 S2(a) 和 S1(b) 分别显示了合成状态和氢化硅化 Si-QDs(样品 1)的 Si 2p 光谱。合成状态的 Si-QDs 在 99.6 和 100.5 eV 处出现峰,分别对应于 Si 2p 1/2 和 Si 2p 3/2 ,这是元素 Si 的特征,还有其他氧化 Si 物质,Si 1+(100.4 eV)、Si 2+(101.9 eV)、Si 3+(102.6 eV)和 Si 4+(103.7 eV)。1, 2。元素 Si 峰的存在证实样品由 Si 制成。宽氧化峰表明氢化物端接的 Si-QDs 在转移过程中与环境氧发生了反应,而 Si-QDs 本质上并不存在这些反应。对于氢化硅化 Si-NC(图 S2(b)),我们发现元素 Si 峰与合成样品类似,还有对应于 Si-C(101.3 eV)和 Si- R/Si(O)R(101.8 和 102.3 eV)3 的峰,而氧化 Si 物质没有产生显著贡献。图 S2(c) 中所示的氢化硅化 Si-QDs 的 C 1s 光谱分别显示存在 C=C(284.5 eV)、CC(285.1 eV)和 C- Si(283.9 eV)4,没有氧化物相关峰,与 Si 2p 元素光谱一致。该结果与 FTIR 观察结果一致,并证实了氢化物封端的 Si-QDs 通过氢化硅化用烷基钝化。
图S2:A,长INSB-SN部分的SEM图像。观察到NW远离SN沉积方向的小弯曲。这可以归因于材料的不同热膨胀系数,也可以归因于界面中的残余应变。6,7 B,鳗鱼elemental sn,sb和NWS的INSB/INAS部分。在INSB表面上可以理解连续的SN壳,而它作为INAS茎上的离散岛沉积。c,从(b)中标记为in,sn和sb边缘标记的(b)中标记的区域提取的鳗鱼光谱。d,INAS和INSB之间的交点区域的底部曲率。SN通常在该区域不存在。这可能是由于弯曲区域中的高表面能,或者当SN沉积时可能会被遮盖。比例尺为:(a)100 nm,(b)100 nm,(d)20 nm。