1 波兰克拉科夫雅盖隆大学医学院内科系,ul. Skarbowa 1, 31-121;2 英国爱丁堡大学女王医学研究所心血管科学中心,47 Little France Crescent, Edinburgh EH16 4TJ,英国;3 波兰克拉科夫雅盖隆大学医学院 OMICRON 医学基因组学中心,ul. Kopernika 7c, 31-034;4 意大利波齐利 IRCCS INM Neuromed 心血管神经病学和转化医学系,Via Atinense, 18, 86077;5 英国曼彻斯特大学生物、医学和健康学院医学院心血管科学系,46 Grafton Street, Manchester M13 9NT,英国; 6 罗马大学分子医学系,Viale Regina Elena, 291 - 00161 Roma,意大利;7 伦敦帝国理工学院公共卫生学院流行病学与生物统计学系,南肯辛顿校区,伦敦 SW7 2AZ,英国;8 约阿尼纳大学医学院卫生与流行病学系,约阿尼纳大学校园,邮政信箱:1186,451 10,约阿尼纳,希腊;9 生物医学研究系,分子生物学与生物技术研究所,希腊研究与技术基金会,大学校园 GR -451 15,约阿尼纳,希腊;10 威廉哈维研究所,NIHR 生物医学研究中心,伦敦玛丽女王大学,Charterhouse Square,伦敦 EC1M 6BQ,英国; 11 格拉斯哥大学感染与免疫学院、医学、兽医学和生命科学学院,英国格拉斯哥大学大道,邮编 G12 8QQ;12 那不勒斯费德里科二世大学医学和外科学院药学系,邮编 Via Domenico Montesano 49,邮编 80131 那不勒斯,意大利;13 英国爱丁堡大学英国痴呆症研究所临床脑科学中心,邮编 49 Little France Crescent,邮编 EH16 4SB;14 莱斯特大学心血管科学系,邮编 University Road,邮编 Leicester LE1 7RH,英国;15 NIHR 莱斯特生物医学研究中心,邮编 Glenfield 医院,邮编 Groby Road,邮编 Leicester LE3 9QP,英国;16 曼彻斯特大学 NHS 基金会曼彻斯特学术健康科学中心医学部,邮编 Oxford Road,邮编 Manchester M13 9WL,英国; 17 布里斯托医学院,布里斯托大学人口健康科学系,布里斯托皇后路,邮编 BS8 1QU,英国;18 布里斯托大学医学研究委员会综合流行病学部,布里斯托皇后路,邮编 BS8 1QU,英国
患有不成比例的巨脑症 (ASD-DM) 的自闭症患者,其脑部相对于身高较大,智力障碍的发生率高于脑部大小正常的自闭症儿童,面临的认知挑战也比患有平均脑容量的自闭症儿童更严重。这种神经表型背后的细胞和分子机制仍不甚明了。为了研究这些机制,我们从正常发育的非自闭症儿童和患有和不患有不成比例的巨脑症的自闭症儿童中产生了人类诱导性多能干细胞。我们利用磁共振成像和全面的认知和医学评估对这些儿童进行了纵向评估,从 2 岁到 12 岁。我们发现,来自 ASD-DM 儿童的神经祖细胞 (NPC) 表现出更高的细胞存活率和抑制的细胞死亡,同时伴有
海洋酸化会显着影响牡蛎等海洋钙化剂,保证研究分子机制(如DNA甲基化),这些机制响应环境变化而导致自适应可塑性。然而,在海洋无脊椎动物中,甲基化模块基因表达和可塑性的程度尚未达成共识。在这项研究中,我们研究了PCO 2对基因表达和DNA甲基化的影响,在牡蛎crassostrea virginica中。暴露于30天的对照(572 ppm)或升高的PCO 2(2,827 ppm)后,由成年雌性性腺组织和雄性精子样本产生了整个基因组Bisulfite测序(WGB)和RNA-SEQ数据。尽管在女性(89)和雄性(2,916)中鉴定出差异化甲基化的基因座(DML),但没有差异表达的基因,并且在女性中只有一个差异表达的转录本。然而,基因体甲基化影响了精子中其他形式的基因活性,例如每个基因表达的最大转录本数以及表达的主要转录本的变化。升高的PCO 2暴露增加了男性基因表达变异性(转录噪声),但女性的噪声降低,表明甲基化在基因表达调节中的性别特异性作用。对转录级表达变化或含有DML的基因的功能注释显示,有几个富集的生物学过程可能参与了升高的PCO 2响应,包括凋亡途径和信号转导,以及生殖功能。综上所述,这些结果表明,DNA甲基化可能调节基因表达变异性,以维持升高的PCO 2条件下的稳态,并且可能在海洋无脊椎动物的环境弹性中发挥关键作用。
自闭症谱系障碍(ASD)是一种越来越普遍且异质性的神经发育状况,其特征是社会交流差异以及重复行为,集中兴趣和感觉敏感性的结合。早期的言语和语言延迟是年轻自闭症儿童的特征,是父母报告的第一个关注点之一。经常在孩子第二个生日之前。阐明这些延迟的神经机制有可能改善早期检测和干预工作。为了填补这一差距,这项系统评价旨在综合有关早期神经生物学的相关性和预测,并在患有和没有自闭症家族史的婴儿(EL(EL)(EL婴儿)和低可能性(LL婴儿(LL)(LL婴儿)中,分别为自闭症患者(分别为自闭症患者),分别具有自闭症的家族史(分别为自闭症),分别具有自闭症的家族病史,分别为自闭症的家族病史(分别为自闭症患者)提供了言语和语言发展的证据。使用结构磁共振成像(MRI; n = 2),功能性MRI(FMRI; n = 4),功能性近交光谱(FNIRS; n = 4)和电脑图(eegnirsography; n = 14 = 14 = n = 14 = 14。出现的结果中出现了三个主要主题:与LL婴儿相比,EL婴儿表现出(1)非典型语言相关的神经横向化; (2)结构和功能连通性的改变; (3)神经对语音和非语音刺激的神经敏感性的混合纤维,最早在6周大时发现了一些差异。这些发现表明,在明显的行为延迟出现之前,神经影像学技术可能对言语和语言延迟的早期指标敏感。未来的研究应旨在统一神经影像范围内和跨神经影像范围内的实验范式,并探讨在非学术,基于社区的环境中实施此类方法的可行性,可接受性和可伸缩性。
HBA 1C值提供了有关症状血糖控制的长期信息。与高血糖一起形成的糖基化的氧化应激产物增加导致糖尿病患者的微血管和大血管并发症。DFUS患者中与高血糖和葡萄糖代谢相关的变化导致疾病称为PAD,并且动脉粥样硬化的发展以及内皮损伤,高脂血症,粘度增加,粘度增加和血小板活性。已经提出,换句话说,帕德(PAD)是动脉粥样硬化阻塞性疾病,其中30%–78%的DFU患者存在。[34,35]糖化血红蛋白增加了1%的增长,使PAD风险增加28%,而PAD作为独立危险因素的发生率与糖尿病的持续时间有关。[36]仅血管衰竭并不能导致溃疡,但灌注不足可以防止溃疡愈合,为组织坏死奠定基础,并防止感染清除。
摘要 转铁蛋白受体 (TfR) 介导的跨血脑屏障 (BBB) 转胞吞作用是一种有前途的策略,可改善生物制剂向中枢神经系统 (CNS) 的输送。然而,年龄和与衰老相关的疾病是否会影响 TfR 表达和/或 BBB 转运能力仍不清楚。在这里,我们使用 TfR 靶向抗体转运载体 (ATV TfR) 来增强健康小鼠和阿尔茨海默病 (AD) 的 5xFAD 小鼠模型中的 CNS 输送。健康新生儿表现出最高的血管 TfR 表达和 ATV TfR 脑暴露,而 BBB 转运能力在成年期保持稳定。此外,5xFAD 小鼠的 TfR 表达和 ATV TfR 脑摄取均未发生显着变化。此外,AD 患者大脑中的血管 TfR 表达与年龄匹配的对照组相似,这表明 TfR 转运可能在人类 AD 中得到保留。在小鼠早期发育过程中观察到 TfR 介导的脑内输送增多,这表明利用 TfR 平台治疗儿童早期疾病具有更高的疗效。成年小鼠在健康老龄化和 AD 模型中 ATV TfR 转运的保留支持 TfR 平台在与年龄相关的疾病中继续应用。简介血脑屏障 (BBB) 的高度限制性对许多小分子和几乎所有大分子向中枢神经系统 (CNS) 的输送构成了重大挑战 (1-3)。由于全身给药的 IgG 通常只有 0.01-0.1% 能进入 CNS (4),开发利用主动转运机制和受体介导的从脑内皮细胞 (BEC) 管腔(血液)到管腔外(脑)的转胞吞作用 (RMT) 的新型 IgG 神经治疗药物已成为一个主要研究领域 (4-6)。具体来说,多个研究小组证明,通过工程化结合转铁蛋白受体 1 (TfR) 可显著提高啮齿动物 (7-14) 和非人类灵长类动物 (14, 15) 中枢神经系统大分子递送的效率。尽管这些努力前景看好,但尚不清楚广泛年龄范围内的健康老龄化以及神经退行性疾病(例如阿尔茨海默病 (AD))的存在是否以及如何影响 TfR 介导的血脑屏障运输。在健康成人老龄化过程中,除了血管神经单元的重组 (19) 之外,血脑屏障还会经历各种结构、代谢、炎症和运输相关的变化 (16-18)。这些变化可能会改变 TfR 循环速率和/或用于跨血脑屏障运输 TfR 的内吞机制。此外,BEC 的转录和蛋白质组学变化在 AD 的背景下已得到充分证实 ( 20-24 ),这可能会进一步影响 TfR 靶向疗法向中枢神经系统的输送。此外,在健康老龄化中,由于脑屏障完整性受损和/或功能障碍,中枢神经系统屏障通透性可能会增加 ( 17, 19,25 ) 和 AD ( 19, 26 )。所有这些因素都有可能影响基于 RMT 的 CNS 药物输送的有效性。因此,了解年龄和 AD 如何影响这些情况下的 TfR 介导的运输以及 CNS 通透性对于评估基于 TfR 的 BBB 运输平台的实际效用至关重要,其中许多平台目前正在进行临床评估 ( 27, 28 )。
牙周炎与全身多种疾病关系密切,而牙龈卟啉单胞菌是牙周炎发生发展的关键,C反应蛋白(CRP)是细菌感染引起的全身炎症的主要指标之一。本研究以P. gingivalis诱发的雌性大鼠模型,通过体内实验和分子对接的方法评估血清CRP水平的升高。本研究使用P. gingivalis悬浮液于下颌第一左右磨牙近中龈沟中诱发雌性动物模型,剂量为0.05 ml,每三天注射一次,共19天。根据观察期使用致死剂量的氯胺酮对动物实施安乐死,并心脏采血。CRP测定使用ELISA试剂盒。分子对接分析采用Protein Data Bank网站、Pymol软件和ClusPro 2.对CRP水平进行统计学分析,采用方差分析(ANOVA)(p<0.05)。结果显示,雌性牙周炎大鼠模型组血清CRP水平明显高于对照组(p=0.000),在观察期范围内各组间差异无统计学意义(p>0.05),但同一观察期内对照组与雌性牙周炎模型组血清CRP水平有差异(p<0.05)。CRP-赖氨酸特异性牙龈蛋白酶(KGP)键能是P. gingivalis其他毒力因子的CRP键中最低且最稳定的(-1038.6)。综上所述,P. gingivalis诱导可升高雌性牙周炎模型中的CRP水平。
fi g u r e 5在a中的DNA甲基化分析。clausi和e。Nordmanni(A和B)。火山地块显示出对OA暴露的反应性差异和高甲基化的甲基化区域。P CO 2(900 ppm)和对照之间的甲基化差异(X轴)针对Q值(Y轴)绘制。 Q值为0.05,用作差异甲基化分析中的统计截止。 每个绿色和红色斑点分别代表一个具有统计学意义的低甲基化区域。 (c)确认响应于p Co 2(900 ppm)的差异甲基化区域。 clausi。 棒棒糖图显示了P CO 2(900 ppm)和对照之间甲基化状态的差异。 每行代表一个测序的克隆。 每个Lollipop代表一个CPG二核苷酸。 填充和开放的圆圈分别表示甲基化和未甲基化位点。 模棱两可的站点以灰色表示P CO 2(900 ppm)和对照之间的甲基化差异(X轴)针对Q值(Y轴)绘制。Q值为0.05,用作差异甲基化分析中的统计截止。每个绿色和红色斑点分别代表一个具有统计学意义的低甲基化区域。(c)确认响应于p Co 2(900 ppm)的差异甲基化区域。clausi。棒棒糖图显示了P CO 2(900 ppm)和对照之间甲基化状态的差异。每行代表一个测序的克隆。每个Lollipop代表一个CPG二核苷酸。填充和开放的圆圈分别表示甲基化和未甲基化位点。模棱两可的站点以灰色表示
。cc-by 4.0国际许可证是根据作者/资助者提供的,他已授予MedRxiv的许可证,以永久显示预印本。(未通过同行评审认证)