Ariel(大气遥感红外系外行星大型巡天)是欧空局“宇宙视野”计划框架内采用的 M4 任务。其目的是通过凌日光谱法对已知系外行星的大气层进行巡天。发射计划于 2029 年进行。Ariel 科学有效载荷包括一台离轴、未被遮挡的卡塞格林望远镜,该望远镜为波段在 0.5 至 7.8 µm 之间的一组光度计和光谱仪提供信号,并在低温(55 K)下运行。望远镜组件采用创新的全铝设计,可耐受热变化,避免影响光学性能;它由一个主抛物面镜组成,其椭圆形孔径为 1.1 m 的长轴,随后是安装在重新聚焦系统上的双曲面次镜、抛物面重新准直三镜和一个平面折叠镜,将输出光束引导至与光学平台平行。基于 3 个柔性铰链的创新安装系统支撑着光学平台一侧的主镜。光学平台另一侧的仪器舱内装有 Ariel 红外光谱仪 (AIRS) 和精细制导系统/近红外光谱仪 (FGS/NIRSpec)。望远镜组装处于初步设计审查的 B2 阶段,开始制造结构模型;一些组件,即主镜、其安装系统和重新聚焦机制,正在进行进一步的开发活动,以提高其准备程度。本文介绍了 ARIEL 望远镜组装的设计和开发。
太空垃圾已成为太空开发领域的一大问题。具体而言,一种主动清除碎片的方法涉及使用电动系绳系统,该系统利用地磁通量和等离子体电子之间的相互作用。在各种系绳中,带状系绳在碎片清除任务中表现出优异的生存能力。然而,碎片碰撞造成的损伤孔边缘可能会产生应力集中,导致裂纹扩展和系绳断裂。在此,我们提出了一种铝玻璃布带 (ALGC) 系绳,其中应力分布均匀。为了模拟太空垃圾与系绳的碰撞,在 ISAS/JAXA 使用两级轻气枪进行了超高速撞击实验。首先,测量并比较两种类型的系绳(ALGC 系绳和标准铝带系绳)的圆形或椭圆形损伤孔的长度。接下来,根据拉力定义它们的断裂特性。此外,还对铝带系绳进行了碰撞模拟,以便详细了解碎片碰撞。经证实,即使两条系绳的损伤尺寸几乎相等,ALGC 系绳在承受拉力方面也优于铝带系绳。这些多功能 ALGC 系绳克服了铝带系绳的缺点,因此在清除任务期间应具有较高的抗碎片碰撞能力。
碳纤维增强聚合物(CFRP)复合材料在各个行业中都是必不可少的,这是由于其出色的强度与重量比率,出色的耐用性和较高的刚度。但是,CFRP的有效回收仍然是一个重大挑战,需要开发先进技术和更可持续的废物管理解决方案。在这项研究中,我们提出了一种将CFRP废物升级为大量碳纤维复合闪光石墨烯(CFC-FG)的有效且可再现的方法,该方法是通过成本效益的闪光灯焦耳加热(FJH)在毫秒范围内的。所得的闪光石墨烯的广泛特征是形态,结构,光谱和化学分析。这些研究揭示了高度多孔的层状结构,其氧官能团和涡轮质石墨结构低。重要的结构特征,包括拉曼光谱中的独特d'峰和在选定区域电子衍射(SAED)中观察到的椭圆形图案,强调了其独特的特性。这些CFC-FG的这些组合属性在两电子氧还原反应(2e-ORR)中对过氧化氢(H 2 O 2)产生了出色的电化学性能(2e-ORR)。CFC-FG在0.1 M KOH中显示出近100%的选择性和良好的活性,稳定性测试证实了性能的保留,使其成为实际电气合成应用的有前途的候选人。这项工作的核心概念是为H 2 O 2电气合成的回收,可持续的Elec trocatalyst开发出循环经济并支持全球可持续性目标。
摘要:近年来,医学图像分析在早期阶段检测疾病方面起着至关重要的作用。医疗图像迅速用于解决人类问题的各种应用。因此,需要复杂的医疗特征来开发诊断系统供医生提供更好的治疗。传统的异常检测方法遭受给定数据中异常区域的错误识别。视觉效果检测方法用于定位异常,以提高拟议工作的准确性。本研究探讨了视觉显着性图在阿尔茨海默氏病(AD)分类中的作用。自下而上的显着性对应于图像特征,而自上而下的显着性在磁共振成像(MRI)脑图像中使用域知识。提出的方法的新颖性在于使用椭圆形局部二进制模式描述符进行低级MRI表征。类似椭圆的拓扑有助于从不同方向获取特征信息。在不同方向上广泛定向特征覆盖了微模式。阿尔茨海默氏病阶段的大脑区域是从显着图中分类的。多内核学习(MKL)和简单而有效的MKL(SEMKL)用于从正常对照组中对阿尔茨海默氏病进行分类。所提出的方法使用了绿洲数据集,并将实验结果与八种最先进的方法进行了比较。提出的基于视觉显着性的异常检测在准确性,敏感性,特殊性和F量的方面产生可靠的结果。
车辆临时网络(VANET)代表了无线传感器网络(WSN)的改进,其移动感官节点位于车辆内。车辆Adhoc网络在智能城市的应用中处于关键位置,因为车间通信被认为是维持城市技术效率必不可少的。尽管Vanet提供了好处,但它在智能城市应用程序的背景下遇到了许多挑战和缺点。这样的挑战与Vanet的安全和隐私原则有关。隐私和安全性作为与Vanet相关的主要问题,促使多个研究人员在过去十年中提出安全解决方案。目前的研究工作着重于提高服务质量(QoS)的提高数据通信的安全性水平。通过使用区块链技术以及将椭圆曲线加密功能与安全的哈希功能集成以保护从节点到移动控制单元(MCU)的数据通信来实现此安全性增强。此外,提出的研究工作通过采用神经模糊逻辑来识别从源节点到移动控制单元(MCU)的最佳路径,为移动节点和控制单元之间的数据提供了有效的路由机制。将提出的工作与现有的密码方法以及最新的路由路径优化算法,即粒子群优化(PSO),遗传算法(GA),模因算法(MA)(MA)和Honey Bee优化(HBO),以及在计算时间内交付,以确定其优势,即通过PARTIT和分组,并在计算时间内建立优势。
ADR – 主动碎片清除 ASAT – 反卫星武器 COMSATCOM – 商业卫星通信 COTS – 商用现货 DARPA – 国防高级研究计划局 DoD – 国防部 DoS – 国务院 DSS – 国防太空战略 FAA – 联邦航空管理局 FCC – 联邦通信委员会 GEO – 地球同步轨道 GPS – 全球定位系统 GSD – 地面采样距离 HEO – 高椭圆轨道 IADC – 机构间空间碎片协调委员会 ICBM – 洲际弹道导弹 IoT – 物联网 ISR – 情报、监视和侦察 ITU – 国际电信联盟 LEO – 低地球轨道 MEO – 中地球轨道 NASA – 美国国家航空航天局 NATO – 北大西洋公约组织 NDSA – 国防空间架构 NOAA – 国家海洋和大气管理局 NPRM – 拟议规则制定通知 NSSS – 国家安全太空战略 ODMSP – 轨道碎片缓解标准实践 OST – 外层空间条约 PNT – 定位、导航和授时 RPO – 会合和近距操作 SATCOM – 卫星通信 SBIR – 天基红外监视 SDA – 空间发展局 SSA – 空间态势感知 SSN – 空间监视网络 STM – 空间交通管理 UNCOPUOS – 联合国和平利用外层空间委员会 UTC – 世界协调时 WMD – 大规模杀伤性武器
多发性硬化症是中枢神经系统的自身免疫性慢性疾病,尤其是大脑,视神经和脊髓。症状是非常可变的,肢体模糊的麻木,平衡的丧失等等(Xavier等,2012)。磁共振(MR)成像可以准确地可视化并定位在大脑和脊髓中。取决于所使用的序列,它们看起来是白色(从技术术语中,我们谈到“超信号”)或黑色(“低信号”)。2019年,超过240万人患有多发性硬化症。该研究的重点是寻找创新的治疗方法来减轻MS的人。这项研究的目的是从3D RM图像中检测MS中灰质和白质的异常,许多方法已提出自动细分病变,因为手动分割需要专业知识,耗时,并且需要耗时,并且会摄入内部和互具变化(Vera-Olmos等人(Vera-Olmos等人,2016年))。Veronese等人(Veronese等,2013)提出了一种模糊分类算法,该算法使用空间信息进行MS病变分割。除了空间信息外,还将标准偏差依赖性过滤纳入算法中,以提供更好的噪声免疫。此外,由于大多数板以此形式,因此对模糊逻辑进行了调整以在垂直椭圆对象而不是圆形对象上更具选择性。Saba等(Saba等,2018)提出了一种使用Canny算法从轮廓检测开始的MS病变分割方法,然后应用了修改的模糊平均C算法
(CBOD)夹具带打开装置(CDS)立方体设计规范(CSLI)立方体发射计划(CSOS)客户空间对象(DPAF)双有效载荷附加配件(EAGLE)ESPA ESPA ESPA ESPA ESPA ESPA ESPA ESPA ESPA ESPASESTAILARE实验室实验(EELV)EELV EELV EALVEABLABLE SPACE ERPORABL ABOREVER EVEREDEND PRECTEND WAMERATION(ENANORCSD)CUBSASD CUBSACTA CUBSACTA CUDAATA(ESATESD)(ESATASD) EELV二级有效载荷适配器(GEO)地静止赤道轨道(HEO)高度椭圆形轨道(ISS)国际空间站(J-SSOD)JEM小型卫星轨道轨道轨道(JAXA)日本航空航天勘探局(JEM)日本实验模块(JEMRMS)日本实验模块的远程模块化(JEMRMS) (M-OMV) Minotaur Orbital Maneuvering Vehicle (MEO) Medium Earth Orbit (MET) Microwave Electrothermal Thrusters (MLB) Motorized Light Bands (MPAF) Multi Payload Attach Fittings (MPEP) Multi-Purpose Experiment Platform (NICL) Nanoracks Interchangeable CubeSat Launcher (NOAA) National Oceanic and Atmospheric Administration (NRCSD) Nanoracks ISS立方体外部部署(OMV)轨道机动车辆(OTV)轨道运输车辆(PCBM)Cygnus Cygnus被动式泊位机制(RUG)乘车用户指南(SL-OMV)小型发射轨道轨道操纵车辆(SSMS)
热源性碳(PYC)是一个广泛定义的术语,指的是降解连续体,从轻度烧焦(相对易于降解)到高度凝结的芳香族芳和顽固的碳化合物(Bird等人,2015年,2015年)。持续的烦恼指出了将PYC定量方法应用于土壤样本和解释其结果的困难,其中各种研究报告了PYC浓度的可变性在应用不同的方法时,同一土壤样品的数量级最高阶,例如,应用不同的方法时(例如,Hammes等,2007;Kerré,2007;Kerré等,2006;kerré等人。 )。在发现和描述的最新进步和早期工业木炭富技术溶胶中,它们有可能用作研究土壤中充气碳/生物炭的长期影响的模型系统(Borchard等,2014; Burgeon等人,2020; Criscuoli et al。,2014年)。这些技术溶胶是在以前直立的炉膛(遗物木炭炉膛,RCHS,有时也称为木炭窑)的历史木炭生产的遗迹中发现的,这些木炭主要在北半球潮湿的中纬度Ecozone森林中发现。这些微浮雕位点是圆形高程(在平坦的地形上)或圆形至椭圆形的平台(在倾斜的地形上),平均直径约为10米(Hirsch等人,2020年)。美国东北部和中欧的RCH上的土壤具有特征性的特征性修饰,土壤物理和化学
1. AIT:组装、集成和测试 2. AO:机会公告 3. AoA:公司章程 4. BBIU:重新投入使用 5. BIU:投入使用 6. BSS:广播卫星服务 7. BW:带宽 8. CDR:关键设计审查 9. CIN:公司识别码 10. COLA:防撞分析 11. COMINT:通信情报 12. CPSE:中央公共部门企业 13. DoS:空间部 14. DoT:电信部 15. DPIIT:工业和国内贸易促进部 16. DSM:数字表面模型 17. DST:科学技术部 18. DTM:数字地形模型 19. EIRP:有效/等效全向辐射功率 20. ELINT:电子情报 21. EO:地球观测 22. FDI:外国直接投资 23. FMECA:故障模式、影响和危害性分析 24. FSS:固定卫星服务 25. G/T:噪声温度增益 26. GSD:地面采样距离 27. GSO:地球静止轨道 28. GSTIN:商品及服务税识别号 29. HEO:高椭圆轨道 30. IARU:国际业余无线电联盟 31. IDP:IN-SPACe 数字平台(www.inspace.gov.in) 32. IEC:进出口代码 33. IN-SPACe:印度国家空间促进与授权中心 34. ISP:印度空间政策 35. ISRO : 印度空间研究组织 36. IST : 综合卫星测试