户外运动:学校拥有一个大型开放式多功能运动场/场地,面积约 14,760 平方米,配有 10 英尺高的铁丝网围栏。足球场、带球门的手球场、板球场、草地网球场 (02)、篮球场 (02) 和排球场 (03)。运动场内配有泛光灯设施,可在深夜/夜间使用。此外,学校还设有一个体育场,内有板球场和 400 米田径和田径跑道。此外,每间宿舍都设有羽毛球场。此外,宿舍还设有开放式草地网球场 (05)、篮球场 (02) 和排球场 (02)。体育馆:学校拥有一个现代化的体育馆和一个露天体育馆,配备齐全的减肥器械,可帮助学生锻炼身体并保持健康。学校还设有一名常驻专业健身教练来鼓励学生。开放式健身房:学院在男生宿舍区、女生宿舍区和住宅区等 08 个地点设立了开放式健身房。开放式健身房设有腿部推举器、三重扭腰器、胸部推举器、双轮肩推器、重型空中漫步机、腿部推举器划船机、椭圆交叉训练机和双杠。游泳池:学院拥有一个 360 平方米的游泳池(长 × 宽 × 深:25 × 12 × 1.2 - 2.4 米)。游泳池设施全周开放,供学生/教职员工使用。文化活动设施:除了教学之外,学院还为学生提供许多机会和设施,让他们参与各种文化/课外活动。
(18 SDS) U.S. Space Force 18 th Space Defense Squadron (19 SDS) U.S. Space Force 19 th Space Defense Squadron (CA) Conjunction Assessment (CARA) NASA's Conjunction Assessment Risk Analysis program (CAESAR) Conjunction Analysis and Evaluation Service, Alerts and Recommendations (CCR) Corner Cube Reflectors (CNES) Centre National d'Etudes Spatiales (French Space Agency) (COTS) Commercial-off-the-Shelf (CUBIT)立方体识别标签(D/T/I)检测,跟踪和识别(EGTN)外分析全球望远镜网络(ELROI)极低的资源光学标识符(EUSST)欧盟空间监视和跟踪计划(FCC)联邦通信委员会(GEOSYNCHRONOUS SYSTITE)GEOSYNCHROUS Equicatial(GEOSYNCHRONOUS GROMANES GNSELSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSER)GNSERTARES GNSERASSSSERTARE(GN) (GUI)图形用户界面(HEO)高度椭圆形轨道(HUSIR)HAYSTACK超级卫星卫星成像雷达(IDS)识别(ILRS)国际激光范围范围服务(LEDS)发光diodes(MEO)中等地球(NPR)NASA Procement Enternement(NPR)NASA Procement nation(NANASOSATERICTION)NANOSATERINE(NANANOSATERICE)NANANOSATERICESTINES(NANANOSELITES) (OCAP)轨道连接评估计划(OEM)轨道胚胎消息(O/OS)所有者/操作员(OSAS)轨道安全分析师(PNT)位置,导航和时间(RF)射频(RF)射频(RFID)射频频率识别(SRI)射电频率识别(SRI)Stanford Research Institute(SSA)空间(SSA)空间(SSA)的尺寸(SSA)的量(SSA)量(SSA)的量(SSA)量(SSN) (TLE)两行元素(TRACSS)空间的交通协调系统(USIR)Ultrawideband卫星成像雷达
课程类型PC课程学习目标,以了解离散变换,离散时间系统的实现,FIR滤波器的设计,IIR过滤器的设计。课程内容单元i z变换:z-变换及其属性,极点和零,Z-Transform的反转,单方面的Z传输和微分方程的解决方案。分析Z-域,因果关系,稳定性,Z变换和傅立叶变换之间的关系的分析。频率选择性过滤器;所有通过过滤器,最小相,最大相和混合相系统。II单元DFT和FFT:频域采样和DFT,线性变换,与其他变换的关系,DFT的属性,使用DFT的线性滤波,使用DFT,Radix 2&Radix-4 FFT算法对信号进行频率分析,Goertzel算法,Goertzel算法,FFT AlgorithM的应用,fft Algorithm的应用,计算dft的fft Algorithm compore sequecentions dft of Realte of Realte seque of Realte seque of Realte seque。第三单元的实施离散时间系统:直接形式,级联形式,频率采样和FIR系统的晶格结构。直接形式,转置形式,级联形式平行形式。IIR系统的晶格和晶格梯子结构。 状态空间结构。 过滤器的IV单元设计:实用频率选择性过滤器的特征。 过滤设计规格峰通过带纹波,最小停止频段衰减。 使用Windows的FIR过滤器设计四种类型的FIR滤波器。 kaiser窗口方法比较FIR过滤器的设计方法Gibbs现象,频率采样方法的FIR滤波器设计,最佳equiripple fir滤波器的设计,交替定理。IIR系统的晶格和晶格梯子结构。状态空间结构。过滤器的IV单元设计:实用频率选择性过滤器的特征。过滤设计规格峰通过带纹波,最小停止频段衰减。使用Windows的FIR过滤器设计四种类型的FIR滤波器。kaiser窗口方法比较FIR过滤器的设计方法Gibbs现象,频率采样方法的FIR滤波器设计,最佳equiripple fir滤波器的设计,交替定理。来自模拟过滤器的IIR过滤器的设计,通过衍生物的近似设计,脉冲不变方法双线性转换方法的特征,Chebyshev和Chebyshev和椭圆形模拟过滤器和IIR滤波器的设计,频率转换。
*gdliu@xtu.edu.cn 摘要:偏振光在通信波段具有多种潜在应用,包括光通信、偏振成像、量子发射和量子通信。然而,优化偏振控制需要在动态可调性、材料和效率等领域不断改进。在本文中,我们提出了一种基于硼墨烯的结构,它能够通过局域表面等离子体(LSP)的相干激发将光通信波段的线性偏振光转换为任意偏振光。此外,可以通过将第二个硼墨烯阵列放置在第一个硼墨烯阵列的顶部并使它们的晶面相对旋转90°来实现双层硼墨烯结构。通过独立控制双层硼墨烯的载流子浓度可以切换反射光的偏振态的旋转方向。最后利用偶极子源实现偏振光的发射,其发射速率比自由空间中的发射速率高两个数量级,并且可以通过操纵载流子浓度来动态控制偏振态。我们的研究简单紧凑,在偏振器、偏振探测器和量子发射器领域具有潜在的应用。1.引言 偏振是电磁波的本征特性之一,它表示电磁矢量在空间中方向改变的性质[1],包括三种偏振态:线偏振光(LPL)、椭圆偏振光(EPL)和圆偏振光(CPL)。在通信和传感领域,与LPL相比,CPL使光能够抵抗环境变化,并且忽略了散射和衍射的影响[2-4]。直接产生CPL比较困难,但可以通过调节两个正交电场分量之间的电磁振幅和相位,将LPL转换成CPL[5]。超材料可以灵活地操控光的散射振幅、相位和偏振,理论上可以将光的波前塑造成任何所需的形状。偏振转换的早期研究表明,由贵金属组成的超材料
摘要:中手势界面已在特定场景中流行起来,例如通过头戴式显示器与增强现实的交互、通过智能手机或游戏平台进行特定控制。本文探讨了使用位置感知的基于空中手势的命令三元组语法与智能空间进行交互。该语法的灵感来自人类语言,构建为具有命令结构的呼格。在“请打开灯!”这样的句子中,通过模仿其首字母/首字母缩略词(呼格,与句子的省略主语一致)的手势来调用被激活的对象。然后,几何或方向手势识别动作(命令式动词),可能包括对象特征或要与之联网的第二个对象(补语),也由首字母或首字母缩略词表示。从技术上讲,依赖于可训练的多设备手势识别层的解释器使对/三元组语法解码成为可能。识别层适用于可抓取设备(智能手机)和自由手持设备(智能手表和外部深度摄像头)以及特定编译器的加速度和位置输入信号。在 Living Lab 设施的特定部署中,语法已通过使用源自英语的词典(关于首字母和首字母缩略词)进行实例化。对 12 名用户的受试者内分析使我们能够分析手势语法在其三种设备实现(可抓取、可穿戴和无设备)中的语法接受度(就可用性、手势对物体动作的一致性和社会接受度而言)和技术偏好。参与者对学习语法的简单性及其在管理智能资源方面的潜在有效性表示了共识。在社交方面,参与者倾向于在户外活动中使用手表,在家庭和工作环境中使用手机,强调了社交背景在技术设计中的重要性。由于其效率和熟悉度,手机成为手势识别的首选。该系统可适应不同的传感技术,解决了可扩展性问题(因为它可以轻松扩展到新对象和新动作)并允许个性化交互。
摘要低速亚音速测试 • WBF 研究和开发风洞是一个闭式回流连续流动回路。 • 特性(适用于一个大气压运行,80% 功率) 马赫数:0 到 0.25 雷诺数:0 到 1.8 x 10 6 每英尺 动压:0 到 67 psf 温度:0 到 100°F 测试区域:10 英尺 x 7.5 英尺椭圆形部分,15 英尺长 • 典型测试项目包括飞机开发、非稳定翼型流场研究、发动机舱诱导涡流生成、地平面影响、阵风相互作用、旋翼。 • 数据采集系统包括与计算机系统相连的力天平,用于在线记录、存储和检查原始、简化或图形显示的输出。 32 通道数字数据记录 • 多用户设施允许同时进行数据比较或操作,以及相关计算以进行分析。 • 压力测量系统包括三个计算机控制的 Scani 阀和 Setra 传感器,其平坦频率响应可达 800 Hz。• 外部六分量主机械平衡适用于升力负载达 3000 磅的支柱式模型。内部应变计平衡适用于负载达 100 磅的支柱式支架、模型组件等。• 辅助空气供应用于推进装置、喷射、边界层控制等。在 60 或 125 psi 时,连续流速分别为 1.5 或 0.5 lb/sec,在 100 psi 时间歇为 4 lb/sec,在 22 psi 时为 9 lb/sec。• 阵风发生器系统用于纵向和水平阵风。近似值
教授UMUT TOPAL 个人信息办公室电话:+90 462 377 8426 电子邮件:utopal@ktu.edu.tr 网址:https://avesis.ktu.edu.tr//utopal 地址:卡拉德尼兹技术大学,技术学院,特拉布宗土木工程系国际研究人员 ID ORCID:0000-0003-0298-3795 Publons / Web Of Science ResearcherID:AAW-5374-2020 Yoksis 研究人员 ID:133814 教育信息 博士学位,卡拉德尼兹技术大学,-,土木工程,土耳其 2003 - 2009 研究生,卡拉德尼兹技术大学,-,土木工程,土耳其 2000 - 2003 本科,耶尔德尼兹技术大学,土木工程学院,土木工程,土耳其 1994 - 1998 研究领域固体力学、土木工程、机械、结构力学、建筑动力学、建筑稳定性、工程与技术 学术头衔/任务 副教授,黑海技术大学,-,土木工程,2011 - 继续 讲师 博士,黑海技术大学,-,土木工程,2009 - 2011 讲师,黑海技术大学,-,土木工程,2006 - 2009 研究助理,黑海技术大学,-,土木工程,2000 - 2003 学术和管理经验 黑海技术大学,2011 - 继续 发表的期刊文章被 SCI、SSCI 和 AHCI 索引 I. 一种用于加筋压电层压复合材料板屈曲优化的新方法 Goodarzimehr V.,TOPAL U.,Fotovat MB JOURNAL OF COMPOSITE MATERIALS,第 58 卷,第 28 期,第 2975-2991 页,2024 (SCI 扩展)II.使用 bonobo 优化算法对不同非均匀边缘载荷下的带椭圆孔层压复合材料板的屈曲载荷进行优化 Shaterzadeh A.、TOPAL U.、Hadad V.、Das AK 先进材料与结构力学,2024(SCI 扩展版)
菲律宾共和国农业部秘书办公室奎松市迪利曼椭圆路 1993 年 10 月 12 日畜牧业行政命令第 27 号 1993 系列主题:确定/评估兽药对目标动物的功效和安全性的最低要求根据 RA 第 3720 号(经第 175 号行政命令修订,也称为“食品、药品、设备和化妆品法”)RA 3675(也称为 1988 年“仿制药法”)、RA 382(称为“药房法”)、RA 6425(称为“1972 年危险药物法”)(经修订)RA 1556(也称为“牲畜和家禽饲料法”)、RA 1071(兽医生物制品和药物制剂销售管理法案和 RA 3101 法案,该法案授权畜牧业局局长在农业和自然资源部长批准下颁布用于治疗家畜的病毒、血清、毒素或类似产品的制备、销售、贸易、装运和进口法规,以及农业部和卫生部于 1991 年 9 月 20 日签署的《协议备忘录》,该备忘录规定了双方在对从事兽药、预混料和产品的制造、分销和销售机构进行许可方面的职能,同样还包括对兽药和产品(例如兽用生物制品、预混料药物、水溶性药物、补充剂和动物饲料)进行注册,为供所有相关方参考、指导和遵守,现颁布以下内容,以确定用于治疗食用动物的药物的功效和目标动物安全性的最低要求。这些要求的目的是确定哪些药物对发展中国家有益,并防止使用不安全或无效的药物。A. 在发达国家有令人满意的使用历史的药物如果一种药物或药物组合已在发达国家得到评估和批准,并且该药物有令人满意的使用历史,则以下测试要求将适用于各种使用条件:
确定施加载荷的位置点,以避免航空航天应用中使用的薄截面发生扭曲。 理解区分曲梁中中性轴和质心轴的概念。 理解为分析受扭转的非圆形杆而开发的类比模型,以及分析滚动体之间产生的应力和三维物体中的应力。 UNIT-I:应力分析:点的应力状态、任意平面上的应力分量、主应力、应力不变量、莫尔圆、最大剪切平面、八面体应力、平面应力状态、平衡微分方程、边界条件。应变分析:点附近的变形、点的应变状态、剪应变分量的解释、应变和主应变的变换、兼容条件。平面应变状态。线性应力-应变-温度关系:内能密度和互补内能密度。各向异性、正交各向异性和各向同性弹性的胡克定律。各向同性材料的热弹性方程 UNIT-II 剪切中心:轴对称和非对称截面的弯曲轴和剪切中心-剪切中心。薄壁截面的剪切应力、箱梁的剪切中心非对称弯曲:非对称弯曲梁的弯曲应力、非对称弯曲导致的直梁挠度。 UNIT-III:曲梁理论:温克勒-巴赫周向应力公式 – 局限性 – 校正系数 – 曲梁的径向应力 – 闭环承受集中和均匀载荷 – 链环中的应力。第四单元:扭转:线性弹性解,一般棱柱形杆——实心截面,如圆形、椭圆形、三角形和矩形,普朗特弹性膜(皂膜)类比;窄矩形截面,空心薄壁扭转构件,多连通截面。第五单元:接触应力:介绍,确定接触应力的问题,接触应力解所基于的假设;主应力表达式;计算接触应力的方法,点接触物体的挠度;两个物体在窄矩形区域接触的应力(线接触)垂直于面积的载荷,两个物体线接触的应力,垂直于和切向于接触面积的载荷。
U. Chatterjee等。[6]使用椭圆曲线加密方法(ECC)方法来确保物联网网络的通信。实验表明,与现有方案相比,它提供了轻巧的身份验证和关键管理过程,这些过程消耗了更少的网络资源(在妥协网络的限制下)。Q. Ma等。 [7]为智能家用设备开发了身份验证方案。 它使用设备签名来通过物联网网络的身份验证邻居的身份验证。 分析表明,中间设备可以互相验证,以确保防止锻造的安全通信。 Y. Li [8]使用ECC加密图为IoT网络开发了一种多因素身份验证方案。 它使用实体模型进行安全性,并且还根据设备签名来计算信任因素。 分析表明,与现有的身份验证方案相比,它更加安全/资源。 R. Krishnasrijaet Al。 [9]为IoT网络开发了基于多项式的身份验证过程。 它使用会话密钥进行设备身份验证。 仿真结果表明,它可以防止网络资源免受常见的安全威胁,并且其计算开销较少。 Z. Wang等。 [10]引入了针对物联网网络的轻质身份验证方案。 它将唯一ID(基于设备硬件)分配给网络中的每个设备,然后使用集中式服务器注册设备以进行安全通信。 分析表明,与现有方案相比,它消耗了较少的计算资源。Q. Ma等。[7]为智能家用设备开发了身份验证方案。它使用设备签名来通过物联网网络的身份验证邻居的身份验证。分析表明,中间设备可以互相验证,以确保防止锻造的安全通信。Y. Li [8]使用ECC加密图为IoT网络开发了一种多因素身份验证方案。它使用实体模型进行安全性,并且还根据设备签名来计算信任因素。分析表明,与现有的身份验证方案相比,它更加安全/资源。R. Krishnasrijaet Al。 [9]为IoT网络开发了基于多项式的身份验证过程。 它使用会话密钥进行设备身份验证。 仿真结果表明,它可以防止网络资源免受常见的安全威胁,并且其计算开销较少。 Z. Wang等。 [10]引入了针对物联网网络的轻质身份验证方案。 它将唯一ID(基于设备硬件)分配给网络中的每个设备,然后使用集中式服务器注册设备以进行安全通信。 分析表明,与现有方案相比,它消耗了较少的计算资源。R. Krishnasrijaet Al。[9]为IoT网络开发了基于多项式的身份验证过程。它使用会话密钥进行设备身份验证。仿真结果表明,它可以防止网络资源免受常见的安全威胁,并且其计算开销较少。Z. Wang等。[10]引入了针对物联网网络的轻质身份验证方案。它将唯一ID(基于设备硬件)分配给网络中的每个设备,然后使用集中式服务器注册设备以进行安全通信。分析表明,与现有方案相比,它消耗了较少的计算资源。A. G. Mirsaraei等。 [11]将ECC方法与区块链技术集成在一起,用于通过物联网网络的基于智能卡的身份验证。 它使用私人信任的服务器进行基于区块链的用户注册。 分析表明,它在计算开销/能耗方面表现出色。 P. Tyagi等。 [12]研究了与多因素身份验证方案有关的问题。 研究表明,由于会话密钥可能会在中间设备级别妥协,因此与中间攻击的安全性较差。 可以进一步利用分析数据来克服该方案的缺点。 Z. Siddiqui等。 [13]使用集中式服务器对IoT网络进行了基于数字证书的身份验证。 实验表明,与现有方案(ProSANTA/BIPLAB身份验证)相比,它是高效的方案。A. G. Mirsaraei等。[11]将ECC方法与区块链技术集成在一起,用于通过物联网网络的基于智能卡的身份验证。它使用私人信任的服务器进行基于区块链的用户注册。分析表明,它在计算开销/能耗方面表现出色。P. Tyagi等。[12]研究了与多因素身份验证方案有关的问题。研究表明,由于会话密钥可能会在中间设备级别妥协,因此与中间攻击的安全性较差。可以进一步利用分析数据来克服该方案的缺点。Z. Siddiqui等。[13]使用集中式服务器对IoT网络进行了基于数字证书的身份验证。实验表明,与现有方案(ProSANTA/BIPLAB身份验证)相比,它是高效的方案。