摘要:研究了含有石墨烯纳米片(GNS)的基于乙二烯 - 偏烯 - 烯烯 - 二烯单体(EPDM)单体(EPDM)单体(EPDM)的复合材料的机械,热和γ辐射衰减特性。还研究了聚乙烯乙二醇(PEG)作为兼容器来改善填充剂的分散体。结果表明,与EPDM相比,这些填充剂的综合使用导致机械性能的急剧增加,分别达到了伸缩强度和伸长率的123%和83%。相反,与基于EPDM/B/GN的复合材料相比,在包含EPDM GN和B的复合材料中添加PEG的复合材料具有较低的机械性能。然而,PEG的存在导致获得具有大量衰减系数的复合材料(EPDM/B/GNP),可对伽玛辐射(137 cs,662 keV)优于没有PEG的该复合材料。此外,复合EPDM,B和PEG在断裂时表现出伸长率153%,高于未填充的EPDM。此外,与未填充的EPDM相比,由100个PHR(III)氧化物(III)PHR组成的二元填充系统可导致EPDM复合材料的61%线性阻尼系数达到61%。分别使用扫描电子显微镜和能量分散X射线光谱获得的聚合物基质中形态和填充剂的状态的研究为理解影响伽马射线衰减特性的因素提供了有用的背景。最后,结果还表明,通过调整配方,可以调整用氧化物和石墨烯纳米纤维素增强的EPDM复合材料的机械和热性能。
摘要 海洋生态系统富含“omega-3”长链(C 20-24)多不饱和脂肪酸 (LC-PUFA)。人们历来认为,这些脂肪酸的产生主要来自海洋微生物。最近,这一长期存在的教条受到了挑战,因为人们发现,许多无脊椎动物(大多生活在水中)都具有从头合成多不饱和脂肪酸 (PUFA) 和从中合成 LC-PUFA 所必需的酶机制。关键突破是在这些动物中检测到了称为“甲基末端去饱和酶”的酶,这种酶能够实现 PUFA 的从头合成。此外,在几种非脊椎动物门中,还发现了在 LC-PUFA 生物合成中起关键作用的其他酶,包括前端去饱和酶和极长链脂肪酸蛋白的延长。本综述全面概述了这些基因/蛋白质家族在水生动物(尤其是无脊椎动物和鱼类)中的补充和功能。因此,我们扩展并重新定义了我们之前对脊索动物中存在的 LC-PUFA 生物合成酶的修订,并将其应用于整个动物,讨论了关键的基因组事件如何决定不同分类群中去饱和酶和延长酶基因的多样性和分布。我们得出结论,无脊椎动物和鱼类都表现出活跃但明显不同的 LC-PUFA 生物合成基因网络,这是由复杂的进化路径与功能多样化和可塑性相结合的结果。关键词水生生态系统、生物合成、极长链脂肪酸蛋白的延长、前端去饱和酶、长链多不饱和脂肪酸、甲基端去饱和酶、ω-3
高速烧结是一种新型粉末床熔合增材制造技术,该技术使用红外灯提供密集的热能来烧结聚合物粉末。热能的量对于解决与颗粒聚结相关的缺陷(如孔隙率)至关重要。本研究调查了能量输入对孔隙率及其对聚酰胺 12 部件机械性能的影响。样品以不同的灯速生产,产生从低到高的不同能量输入。然后使用 X 射线计算机断层扫描技术对它们进行扫描,随后对其进行拉伸测试。发现能量输入、孔隙率和机械性能之间存在很强的相关性,其中孔隙形成的根本原因是能量输入不足。更多的能量输入导致孔隙率降低,从而导致机械性能改善。通过使用标准参数,实现的孔隙率、极限拉伸强度和伸长率分别为 0.58%、42.4 MPa 和 10.0%。进一步增加能量输入可使孔隙率降至最低 0.14%,极限抗拉强度和伸长率最高,分别为 44.4 MPa 和 13.5%。研究了孔隙形态、体积、数量密度和空间分布,发现这些与能量输入和机械性能密切相关。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
摘要:电子束自由曲面制造是一种送丝直接能量沉积增材制造工艺,其中真空条件可确保对大气进行出色的屏蔽并能够加工高反应性材料。在本文中,该技术应用于 α + β 钛合金 Ti-6Al-4V,以确定适合坚固构建的工艺参数。基于所选工艺参数,单个焊珠的尺寸和稀释度之间的相关性导致重叠距离在焊珠宽度的 70-75% 范围内,从而产生具有均匀高度和线性堆积速率的多焊珠层。此外,使用交替对称焊接序列堆叠具有不同数量轨道的层允许制造墙壁和块等简单结构。显微镜研究表明,主要结构由外延生长的柱状前 β 晶粒组成,具有一些随机分散的宏观和微观孔隙。所开发的微观结构由马氏体和细小的 α 层状结构混合而成,硬度适中且均匀,为 334 HV,极限抗拉强度为 953 MPa,断裂伸长率较低,为 4.5%。随后的应力消除热处理可使硬度分布均匀,断裂伸长率延长至 9.5%,但由于热处理过程中产生了细小的 α 层状结构,极限强度降至 881 MPa。通过能量色散 X 射线衍射测量的残余应力表明,沉积后纵向拉伸应力为 200-450 MPa,而进行应力消除处理后应力几乎为零。
最早可识别时机(EIT)在农作物日历中的位置。数字代表不同的物候阶段。红色数字强调了EIT所在的物候阶段。红色的固体盒子标有用于早期作物映射的图像时间序列。稻米:1 - 播种,2 - 播种/洪水,3 - 移植,4 - 恢复,5 - 倾斜,6 - 启动,7 - 标题,8 - 8 - Milkstage,9 - 成熟和10 - 收获;玉米:1 - 播种,2 - 播种/三片叶子,3 - 七片叶子,4 - 茎伸长,5 - 头,6 - 牛奶,7 - 成熟和8 - 6次 - harvest;大豆:1 - 播种,2 - 播种,3 - 第三个真实的叶子,4 - 流动,5 - 豆荚设置,6 - 成熟和7 - 收获。
在开发用于耐热和抗蠕变合金的线材+电弧增材制造 (WAAM) 工艺时,结构由镍基高温合金 Inconel 718 (IN718) 和 Inconel 625 (IN625) 构建。在本文中,使用等离子转移电弧工艺在这两种高温合金中沉积壁结构。在光学和 SEM 下分析微观结构;两种合金均显示出具有长柱状晶粒的典型树枝状结构,合金之间差异不大。研究结果表明,结构包括合金元素的明显偏析,具有潜在的金属间相,例如合金中还发现了 Laves 相和 δ 相,这表明 Nb 和 Mo 在晶界和树枝状区域偏析明显更多。这些合金还经过了室温机械测试,此外,IN625 样品在固溶和时效处理后进行了测试。硬度测量表明,与固溶状态下的锻造合金相比,WAAM 工艺通常可使材料硬度增加约 10%。与沉积状态相比,IN625 的热处理样品硬度增加了约 6%。IN625 的伸长率显示出更大的值。总体而言,IN718 的强度高于 IN625,而伸长率较低。对两种合金及其文献中所述的最大 UTS 和 YS 值进行比较后发现,WAAM 制造的 IN718 和 IN625 在沉积状态下可达到最大 UTS 的一半多一点,无需后处理。在 IN625 中测试的热处理工艺略微缩小了 UTS 性能的差距 3.5%。
•Jacobs,Ruth Q.等,RNA聚合酶I,II和III的转录伸长机制及其治疗意义,《生物化学杂志》,(2024),第300卷,第300卷,第3、105737页,doi:10.1016/j.jbc.2016/j.jbc.20224.1057373737•ma j,n.ma j,mai n n fri n n n n n n n n n n w n n n n n n n w n n w y n n n n n n w y n n w n n n w n friiion。科学。2013年6月28日; 340(6140):1580-3。 https://doi.org/10.1126/science.1235441•Dulin,D。,磁镊子简介。in:Heller,I.,Dulin,D.,Peterman,E.J。(EDS)单分子分析。分子生物学中的方法,第2694卷,(2024年),纽约州人类,纽约,纽约。https://doi.org/10.1007/978-1-0716-3377-9_18 11。 候选人的要求(Wymagania):https://doi.org/10.1007/978-1-0716-3377-9_18 11。候选人的要求(Wymagania):
1。描述了基因化学的历史。2。原核生物和真核生物中的基因结构对比。3。展示了DNA复制的机理和酶学(解旋酶,原始酶,DNA聚合酶,DNA连接酶)。4。对比原核生物和真核生物中的DNA复制。5。定义RNA的结构并赋予RNA亚型的功能。6。研究分子生物学的中心教条。7。解释转录过程。8。解释了细胞核中转录后修饰的过程。9。解释转录的控制,包括操纵子模型。10。解释翻译的机制并提供了启动,伸长和终止的细节。能力3:学生将通过:
激光粉末床熔合 (L-PBF) 使 Glenn Research Copper 84 (GRCop-84) 能够通过增材制造 (AM) 制造出低混合电流驱动发射器组件,Glenn Research Copper 84 (GRCop-84) 是一种具有高抗拉强度和导电性的 Cr 2 Nb 沉淀硬化合金。由于构建体积限制,需要对通过激光焊接连接在一起的模块化段进行 AM 制造。开发了一种夹具系统,用于对准和压缩 0.5 毫米厚的对接焊缝,用氩气保护内表面,并防止组装过程中发生变形。外部夹具和夹板对准发射器部分,同时为脉冲 1070 nm 光纤激光器提供光束通道,而内部微型千斤顶在波导段内膨胀,消除连接部分之间的高度偏移并分配氩气保护气。传导模式焊接可防止形成锁孔和光束穿透波导内部,消除飞溅并产生光滑的底部焊道。顶面的表面粗糙度为 R a =2.34 µm,底面的表面粗糙度为 R a =3.17 µm。焊缝的平均 UTS 为 476 MPa,与 900°C 5 小时热处理后的 520 MPa UTS 相似。DOI:PACS 编号:I. 简介 Glenn Research Copper 84 (GRCop-84) [1], [2] 是一种铌铬化物 (Cr 2 Nb) 8 原子%Cr、4 原子%Nb [3] 沉淀硬化合金,适用于采用激光粉末床熔合 (L-PBF) 的增材制造 (AM) [4],[5],[6],[7],[8]。 L-PBF GRCop-84 的热导率在 260 W/m∙K [5] 到 300 W/m∙K [6] 之间(OFC 的 75%-84%),电阻率为 2.5 µΩ∙cm [9],为无氧铜 (OFC) 的 140%,屈服强度为 500 MPa,打印状态下的 UTS 为 740 MPa,伸长率为 20% [4],经 450°C 热处理 (HT) 后屈服强度增加到 810 MPa,UTS 为 970 MPa,伸长率为 9%,或经 900°C HT 后屈服强度降低到 300 MPa,UTS 为 520 MPa,伸长率为 26-37% [10]。与挤压或热等静压 (HIPing) [12] 粉末固结相比,L-PBF [11] 过程中细化沉淀物尺寸可提高强度,因为 2/3 的抗拉强度来自 Orowan 机制 [13]。高抗拉强度和稳定的沉淀物可用于火箭发动机 [5],[6],[7],[8] 或聚变反应堆 [14],[15] 的高温。高热导率和与 Nd:YAG 和光纤激光器的耦合不良 [16] 增加了传统铜合金的表面粗糙度和空隙率 [17]。GRCop-84 的 L-PBF 可实现全密度(> 99.9%)[4],平均垂直侧壁粗糙度为 Ra =3-4 μm [18]。通过机械抛光 [18] 或化学机械抛光 [20],[21],AM GRCop-84 的表面粗糙度[19]降低至 Ra <~0.3 μm,在 4.6 GHz 下实现低损耗。由于 14 vol% Cr 2 Nb [7],[11] 增强了 GRCop-84 的 AM,近红外激光的低温吸收得到了改善。
Xinyun(Sherry)Cao博士,位于UT西南医学中心的微生物学系的Xinyun(Sherry)CAO,研究转录复合物如何调节梭状芽孢杆菌艰难梭菌的基因表达,这是一种影响肠道微生物组的革兰氏阳性病原体。我们的实验室https://www.caolaboratory.org/有几个激动人心的项目,与揭开细菌病原体内RNA聚合酶功能和调节的复杂性有关。我们在研究中使用了各种方法,包括高级技术,例如冷冻EM,下一代测序(Illumina测序),高通量筛选,体外生化测定和细菌遗传学。具有项目的候选人旨在研究细菌基因和基因组调节,转录复合物的结构和功能以及转录启动,伸长和终止的机制。