神经组织工程需要制造生物相容性支架,其化学和拓扑特性可以根据细胞功能和命运进行定制。[1–3] 具体来说,受生物启发的拓扑线索现已被广泛用作细胞指导材料,以调整细胞-材料界面处所需的细胞行为。[4–8] 其中,各向异性基质代表了一种有前途的工具,可用于开发适用于神经修复策略的支架。[9–14] 特别是,受细胞外环境中发现的纤维和原纤维的形状和几何形状的启发(例如,轴突束和延伸的神经突束),各向异性取向纤维成为决定神经突沿基质主轴排列和伸长以及促进神经元分化的理想候选者。[15–20]
通过解旋酶RECQL5 ALFREDO JOSE FLOREZ ARIZA 1,2, *,NICHOLAS Z. LUE 1, *,PATRICIA GROB 1,3,BENJAMIN KAESER 4,BENJAMIN KAESER 4,JIE FANG 3,JIE A. KASSUBE 2,5,5,5,5,5,4;定量生物科学(QB3),加利福尼亚大学,伯克利分校,伯克利,加利福尼亚州,美国2生物物理学研究生集团,加利福尼亚大学,伯克利分校,加利福尼亚州伯克利,加利福尼亚州,美国3霍华德·休斯医学研究所,加利福尼亚大学,加利福尼亚大学,伯克利大学,伯克利大学,伯克利,加利福尼亚州伯克利,加利福尼亚州,美国4个分子和伯克利亚伯克里尔,伯克利亚,加利福尼亚州。 Department of Biochemistry, Universität Zürich, Zurich, CH 6 Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA * These authors contributed equally: Alfredo Jose Florez Ariza & Nicholas Z. Lue # Correspondence to enogales@lbl.gov Abstract Transcription and its regulation pose a major challenge for genome 稳定。已提出了解旋酶RECQL5作为帮助保护基因组的重要因素,并且是人类RECQ解旋酶家族的唯一成员,直接与RNA聚合酶II(POL II)直接结合并影响其进展。RECQL5减轻细胞中的转录应力和基因组不稳定性,但这种现象的分子机制尚不清楚。在这里,我们采用冷冻电子显微镜(冷冻EM)来确定与RECQL5结合的停滞pol II伸长复合物(EC)的结构。我们的结构揭示了分子相互作用稳定RECQL5与Pol II EC结合,并突出了其作为转录障碍的作用。此外,我们发现RECQL5可以调节POL II易位状态。在其无核苷酸状态下,RECQL5机械地扭曲了EC中的下游DNA,并且在核苷酸结合下,它经历了构象变化,从而使POL II诱导POL II朝向转移后状态。我们提出这种机制可能有助于重新启动pol II伸长率,因此有助于减少转录应力。
液相线温度 806 °C 1483 °F 固相线温度 775 °C 1427 °F 热膨胀系数 (CTE) 18.7 x 10 -6 /C, 适用于 20 – 850 °C 10.4 x 10 -6 /°F, 适用于 68 – 1562 °F 热导率 (计算值) 170 W/m∙K 98 BTU/ft∙h∙ °F 密度 9.7 Mg/m³ 0.350 lb/in³ 屈服强度 (0.2% 偏移) 260 MPa 37.7 x 10 3 lb/in ² 拉伸强度 402 MPa 58.4 x 10 3 lb/in² 伸长率 (2in/50mm 量规截面) 22% 电阻率 46 x 10 -9 ohm∙m电导率 22 x 10 6 /ohm∙m 蒸汽压(计算值)
液相线温度 715 °C 1319 °F 固相线温度 605 °C 1121 °F 热膨胀系数 (CTE) 18.2 x 10 -6 /C,适用于 20 – 400 °C 10.1 x 10 -6 /°F,适用于 68 – 752 °F 热导率(计算值) 70 W/m∙K 40 BTU/ft∙h∙ °F 密度 9.7 Mg/m³ 0.35 lb/in³ 屈服强度(0.2% 偏移) 338 MPa 49 x 10 3 lb/in ² 拉伸强度 455 MPa 66 x 10 3 lb/in² 伸长率(2in/50mm 测量段) 21% 电阻率 106 x 10 -9 ohm∙m 电导率 9.4 x 10 6 /ohm∙m 蒸气压(计算值)
热处理是一种显著改变材料性能的方法。当材料缺乏某些机械性能时,可以通过加热来改变其化学性能和微观结构。这有助于实现更好的屈服强度、延展性和韧性。本项目讨论了多种不同的热处理方法对几种材料的影响,以提高延展性和伸长率而不降低强度。所讨论的材料是高铝钢和 Strenx 700MC 钢,前者正在开发中,后者是市售钢。这些钢有望用作高延展性、高强度和第三代钢。热处理可以改变基础材料的机械性能,从而优化这些钢以用于垂直接入解决方案。
在花生中,使用子叶节外植体在 cv. ICGV 15083 中进行农杆菌介导的转化。总共 250 个外植体与 CRISPR/Cas9 构建体共培养,结果 80 个外植体在芽起始培养基下 30-40 天内产生多个芽。分离产生多个芽的外植体,并在芽伸长培养基中每 10-15 天进行一次卡那霉素选择(125 mg/L)继代培养。总共 70 个芽用 Cas9 和 NptII 基因特异性引物进行测试。其中,50 个(约 70%)对 Cas9 和 NptII 基因均呈阳性(图 3)。在这个组中,25 个芽(约 25%)表现出不同程度的白化表型(图 4,表 2)。白化芽在再生后三个月内无法存活。一些
摘要:用湿过程将粗菜蛋糕用作制备基于蛋白质的生物塑性薄膜的起始材料。农业废物在40℃下实现的甲酸的简单暴露15分钟,可以有助于浆液,可以通过在没有其他增塑剂添加的情况下铸造出来生产可靠的生物塑料胶片。确定最佳过程条件后,所有薄膜和膜均通过DSC和FT-IR光谱依次表征。还测试了他们的吸水能力,拉伸强度和休息性能时的伸长率。通过Fe-Sem/EDX确定产物的各自的表面形态和基本组成。通过将氧化石墨烯加载到生物聚合物三维基质中来进行一些改善其内在特性的尝试。
满足严格的要求,氢容器的压力阻力是由增强纤维支配的,但是树脂矩阵在提供环境外观保护(热,化学,撞击)以及疲劳/压力循环的耐药性方面起着关键作用。在85°C下进行严重的压力循环测试,GTR 13标准要求,实际上,树脂系统必须具有至少115-120°C的玻璃过渡温度(TG),即使在热/潮湿条件下,也必须避免过早故障。研究表明,在断裂时具有高机械强度和高伸长的树脂系统可以更好地支持压力循环引起的尺寸变化(应变),从而防止在最大额定压力下层压板内的裂纹启动。
四糖4,4'-二氨基甲苯甲烷(TGDDM)环氧树脂。这些树脂的热分化是出色的。他们的弱点包括高水分吸收,低断裂韧性以及3%或更低的突破。1双苯酚A(DGEBA)的二甘油乙醚也常用。环氧树脂用交联剂固化,其中胺交联剂至少具有两个反应性胺基团,它们交联环氧化物树脂。可以根据所用的固化剂,选择适当的时间和固化温度以及使用以最大程度地减少复合材料中的空隙的存在来改变固化的环氧树脂的机械性能。通常使用的固化剂是二氨基二苯基磺基(DDS),三乙二烯四矿(TETA),二杨酰胺(Dicyandiamide(dicy),苯甲酰二甲基胺(BDMA)和硼龙三甲基胺(Boron Trifluoride)。