*租户和零售优惠所使用的天然气和电力被排除在外,因为这些第三方公司在塞ER下报告了它们。**报告的排放量是今年的新机场碳认证(3级)报告要求。***通过机场集体电力合同采购的电力的100%是绿色的,由太阳能和风力发电等可再生资源产生。机场社区噪声监视器使用的电力不是集团合同的一部分,在个人/租车中使用的公共电动汽车充电点也不是商业使用的公共电动汽车充电点。这些来源是2023/24的1 T/CO2E。****商务汽车旅行排放是使用里程索赔(英里)和燃料收入(成本转换为升)计算的。
电离辐射计量中心摘要。放射性核素中子源为各种中子测量装置提供了一种产生标准中子校准场的便捷方法。需要知道源的以下属性才能表征某一点的场:总中子发射率、中子能谱以及发射强度随角度的变化。假设光谱随角度的变化对于大多数应用而言可以忽略不计。放射性核素中子源的总发射率可以在国家物理实验室 (NPL) 通过硫酸锰浴技术绝对测量,或通过慢化探测器进行比较测量。各种常用源的中子能谱可在公开文献中找到。本报告描述了 NPL 用于测量放射性核素中子源各向异性发射的方法。给出了相对于各种源类型和封装的圆柱轴的测量中子角分布。还给出了使用蒙特卡洛传输代码 MCNP 计算的分布,这些分布通常与测量的分布具有良好的一致性。
摘要:由于传感器材料和光学波导等实用应用,有机发光的固体材料引起了很多关注。我们以前已经报道过,逆类型日志甲观在晶体中表现出强大的发射,而不会引起聚集引起的淬火。但是,排放颜色仅限于绿色。为了调整发射颜色,在这项工作中,我们新合成具有缩短的π-共轭长度或极性取代基的逆类型日志甲乙烯,并研究了其在溶液和晶体中的荧光性能。晶体根据分子结构表现出各种发射颜色,从蓝色,绿色,黄色到红色。除了缩短的π连接长度和分子内电荷转移特征外,还通过分子间相互作用(例如CH-π相互作用)诱导了晶体的发射颜色变化。
在我们的第一种情况下(图1),我们计算了美国墨西哥湾沿岸产生的蓝色氢的排放强度,并以氨向荷兰出口。图表1表明,根据3.38 kgco 2 Eq/kgh 2(附录A和B)的设定阈值,使用保守的假设,在欧盟中,来自欧洲墨西哥湾沿岸的出口产品不会以生命周期为基础,在欧盟的生命周期基础上符合资格,并使用保守的假设,用于上游甲烷泄漏,2 Zere甲烷泄漏,2 Zere-carbon运输率和85%的捕获率和85%的水分生产。准确地考虑上游甲烷泄漏值通常被低估了,尤其是在使用国家平均值时会增加生命周期排放强度值(图1和附录C中的C1)。同样,即使在氢生产节点处有100%的捕获率,蓝色氢在欧盟中也不有资格,因为在现实世界应用中所见(附录C中的表图C2),欧盟的较低碳的捕获率可能远低于85%。
● 类别 1 和 2 - 采购的商品和服务以及资本货物:罗氏于 2020 年开始量化范围 3 类别 1 和 2。该方法随着时间的推移不断完善,以提高排放因子的相关性和准确性。当前的计算方法使用混合模型,结合基于活动的数据(如果可用)和基于支出的排放因子。支出数据取自原始数据(罗氏 OPERA 系统),乘以排放因子,得出二氧化碳当量排放量。多区域排放因子模型已于 2024 年实施,以更准确地表示我们全球供应链 1 的影响以及对 2022 年和 2023 年的重述。该方法预计将随着时间的推移进一步完善,以利用供应商原始数据等。
从这些执行命令中汲取灵感,NOAA对自己的零净排放舰队的野心可以帮助实现这一目标:未来的舰队。除了减少船上的排放外,NOAA还将寻求通过物流和任务效率的设施和变化来获得的机会和其他减少的机会。尽管在海事行业中,零排放技术和替代燃料取得了显着进步,但仍有重大问题和成本阻止立即纳入目前正在建设的NOAA船只中。未来的双燃料容量,增加电池存储以及其他进步的机会可能会在可能的情况下纳入未来的NOAA船舶设计或改造中。目前的船只是由低排放,混合柴油发动机和其他可以开始减少排放并提高燃油效率的效率的效率建造的。
太阳能发电量。太阳能发电量/天 计划储能 电动汽车储能 电动汽车使用量/天 MW(4) MWh (5) MWh (6) MWh MWh 年份 80,000 263,014 10,000 137,500 20,548 2020 120,000 394,521 40,000 214,221 29,345 2022 200,000 657,534 60,000 630,606 64,788 2025 280,000 920,548 100,000 2,761,555 226,977 2030 375,000 1,232,877 135,000 8,707,270 596,388 2035 420,000 1,380,822 160,000 22,878,560 1,253,620 2040 580,000 1,906,849 230,000 37,908,250 2,077,164 2050
魁北克风力发电产生的 REC 可能有资格在 BERDO 中使用。BERDO 第 7-2.2(m)(b)(i) 节规定,用于符合 BERDO 要求的 REC 必须由符合 225 CMR 14.05 中概述的 RPS I 类资格标准的非 CO2e 排放可再生能源产生,该标准可能会不时修订。可再生能源组合标准 (RPS) 是一项州计划,能源资源部 (DOER) 负责确定发电设施是否有资格获得 RPS I 类。根据该州的合格 I 类可再生能源发电机组列表,如果满足 225 CMR 14.05(5) 中的条件,魁北克特定发电机组的产出将有资格获得 RPS I 类。建筑业主应确认魁北克的风力发电项目在该州的合格 I 类可再生能源发电机组列表上,并符合该州对 RPS I 类的要求。
●在过去三年内,该机构在多大程度上量化了其上游运输和分配的范围3温室气体的排放?(必需)。报告范围1和范围2的报告2在使用车辆和设施期间发生的运输和分配提供商的排放(例如,从能源使用)。示例包括该机构在其1层供应商和其自身运营(在不由该机构拥有或控制的工具和设施中)之间购买的产品的运输和分配)以及该机构购买的运输和分销服务,包括入站物流,包括销售产品和机构之间的站立物流(例如,出院物流(例如,销售的产品),以及机构之间的工具和机构之间(工具)和机构(或机构),以及工具或控制权,以及工具或控制权。