脑机接口 (BCI) 是一个研究脑电图信号以增进我们对人类大脑理解的研究领域。BCI 的应用不仅限于脑电波的研究,还包括其应用。对车辆驾驶员特定情绪的研究有限,且尚未得到广泛探索。本研究使用脑电图信号对驾驶员的情绪进行分类。本研究旨在通过分析脑电图信号来研究驾驶模拟车辆时的情绪分类(惊讶、放松/中立、专注、恐惧和紧张)。实验在模拟环境中以两种条件进行,即自动驾驶和手动驾驶。在自动驾驶下,车辆控制被禁用。在手动驾驶下,受试者能够控制转向角、加速度和制动踏板。在实验过程中,受试者的脑电图数据被记录下来,然后进行分析。
摘要:近年来,研究人员和制造商已开始研究使自动驾驶汽车(AV)与附近的行人互动的方法,以补偿缺乏人类驾驶员的情况。这些努力中的大多数侧重于外部人机界面(EHMI),使用不同的模式,例如光模式或公路预测,以传达AV的意图和意识。在本文中,我们研究了通过EHMIS传达情绪的情感界面的潜在作用。迄今为止,关于情感界面可以在支持AV-Pedestrian相互作用中扮演的角色知之甚少。但是,从家庭同伴到户外空中机器人的许多较小的社会机器人都采用了情绪,以无人机的形式使用。为了为情感AV-Pedestrian界面建立基础,我们回顾了2011年至2021年发表的25篇文章中非人类机器人的情感表达。根据审查的发现,我们提出了一系列设计情感AV-Pedestrian界面的考虑因素,并突出了在未来的研究中调查这些机会的途径。
近年来,使用脑电图 (EEG) 识别情绪引起了广泛关注。尽管取得了进展,但有限的 EEG 数据限制了它的潜力。因此,生成对抗网络 (GAN) 被提出来模仿观察到的分布并生成 EEG 数据。然而,对于不平衡的数据集,GAN 仅通过模仿代表性不足的少数情绪就难以产生可靠的增强。因此,我们引入了情绪子空间约束的生成对抗网络 (ESC-GAN) 作为现有框架的替代方案。我们首先提出 EEG 编辑范式,将参考 EEG 信号从代表性良好的情绪子空间编辑到代表性不足的情绪子空间。然后,我们引入多样性感知和边界感知损失来约束增强子空间。在这里,多样性感知损失通过扩大样本差异来鼓励多样化的情感子空间,而边界感知损失将增强子空间限制在决策边界附近,而识别模型可能在此受到攻击。实验表明,ESC-GAN 提高了基准数据集 DEAP、AMIGOS 和 SEED 上的情感识别性能,同时防止了潜在的对抗性攻击。最后,所提出的方法为在情感子空间约束下编辑 EEG 信号开辟了新途径,促进了无偏且安全的 EEG 数据增强。
情绪表达的产生和识别在个人生活中起着决定性和核心的作用。对情绪的考虑和研究因此尤为重要,因为它使我们能够理解个人的情绪体验和共情机制,为脑机接口 (BCI) 提供驱动知识,通过将情绪模式应用到人工智能工具和计算机中,以及深入了解精神病理学 (Balconi et al., 2015a)。本文旨在研究与个体面部表情产生和识别相关的神经生理相关性和特征,考虑由基于自传体记忆的内部线索引起的情绪反应,称为“自我诱导的记忆”。事实上,正如 Adolphs (2002) 所报告的,人类大脑通过不同大脑区域之间的信息连接来最有效地表示情绪数据,这些大脑区域允许陈述和识别来自不同刺激(如视觉或听觉)的情绪表达。人类大脑代表着将面部、声音和动作表情与个人过去经历联系起来的情感数据。此外,使用不同的神经科学技术,如正电子发射断层扫描 (PET)、功能性磁共振成像 (fMRI) 和脑磁图 (MEG),可以观察到特定大脑区域在不同情绪表达中的参与情况,提供情绪大脑激活图 (Balconi 和 Lucchiari,2007 年;Balconi 和 Pozzoli,2007 年;Deak,2011 年;Kassam 等人,2013 年)。具体而言,神经影像学测量被用作情感计算技术的输入 (Frantzidis 等人,2010 年)。不同的研究假设存在离散的情绪,如快乐、恐惧、愤怒、悲伤,其他情绪状态将从中衍生 (Ekman,1999 年)。离散情绪理论受到了情感循环模型 ( Russell, 1980 ) 的批评,该模型基于两个维度描述和标记情绪:效价和唤醒度。人类大脑整合多模态信息,产生不同听觉和视觉刺激的综合表征 ( Balconi and Carrera, 2011 ; Barros and Wermter, 2016 )。
背景:心理化是人类认知过程不可或缺的,这与对自己和其他人的概要状态的解释有关,包括情感,信念和意图。随着人工智能(AI)的出现以及在心理健康应用中大型语言模型的突出性,关于其情感理解能力的问题持续存在。openai的大型语言模型的先前迭代(chatgpt-3.5)展示了从文本数据中解释情绪,超过人类基准测试的高级能力。鉴于Chatgpt-4的引入,具有增强的视觉处理功能,并考虑了Google Bard的现有视觉功能,因此有必要严格评估其视觉心理化的水平。目的:研究的目的是批判性地评估Chatgpt-4和Google Bard在辨别视觉心理指标方面的能力方面的能力,这与其基于文本的心理能力形成鲜明对比。方法:Baron-Cohen和同事开发的眼睛测试中的阅读思维用于评估模型在解释视觉情感指标方面的熟练程度。同时,使用情感意识量表的水平来评估大型语言模型在文本心理化方面的才能。从两项测试中整理数据提供了对Chatgpt-4和Bard的心理功能的全面看法。结果:ChatGpt-4,在情绪识别方面表现出明显的能力,在2个不同的评估中获得了26和27分数,与随机响应范式显着偏离(p <.001)。这些分数与更广泛的人口统计学的既定基准相符。值得注意的是,Chatgpt-4表现出一致的反应,没有与模型的性别或情感性质有关的可见偏见。相比之下,Google bard的性能与随机响应模式保持一致,确保10和12的得分,并使进一步的详细分析冗余。在文本分析的领域中,Chatgpt和Bard都超过了一般人群的既定基准,他们的表现非常一致。结论:ChatGpt-4证明了其在视觉心理化领域的功效,与人类绩效标准紧密相符。尽管这两种模型在文本情感解释中都表现出值得称赞的敏锐度,但巴德在视觉情感解释中的功能需要进一步审查和潜在的精致。本研究强调了道德AI发展对情感认可的关键性,强调了对包容性数据的需求,与患者和心理健康专家的合作以及严格的政府监督,以确保透明度和保护患者的隐私。
摘要:基于对增强人类计算机相互作用(HCI)和开发用于控制和监测应用的脑部计算机界面(BCI)的脑电图的兴趣日益增长,从EEG传感器中的有效信息检索非常重要。这是由于内部和外部伪像和生理干扰的噪声而难以理解的。可以通过选择应在进一步分析中考虑的功能来增强基于EEG的情绪识别过程。因此,EEG信号的自动特征选择是重要的研究领域。我们提出了一种多步混合方法,该方法结合了自动频带的反向相关算法 - 电极组合选择。我们的方法易于使用,并且显着将传感器的数量减少到只有三个通道。通过在DEAP数据集上执行的实验验证了所提出的方法。已经对两种情绪的准确性进行了评估 - 价值和唤醒。与其他研究相比,我们的方法获得了4.20–8.44%的分类结果。可以将其视为一种通用脑电信号分类技术,因为它属于无监督方法。
摘要 —本文介绍了一项有 134 名参与者的研究结果,该研究旨在探索从与人们喜欢或钦佩的人相似的人工智能生成的虚拟教师那里学习的效果。鉴于教师在塑造学习体验方面发挥的重要作用,以及最近对在线教育的需求激增,我们研究了人工智能生成的教师激发学习的潜力。生成人工智能的最新进展使得根据当今、历史或虚构人物的相似性创建虚拟教师变得容易,从而能够根据材料、背景和学生定制视频教师。我们发现,虽然更高的喜欢和钦佩程度不会导致考试成绩提高,但它们可以显著提高学生的学习积极性,培养更积极的情绪,并提高他们对人工智能生成的教师作为有效教师的评价。
Touch为社会影响沟通提供了重要的非语言可能性。但大多数数字通信都缺乏交换情感触觉信息(触觉表情符号)的能力。此外,先前对触觉表情符号的研究还没有利用有关人类皮肤某些机械感受器的情感影响的知识,例如C型肌(CT)系统。在这里,我们检查了以最佳激活CT系统(定义为“触觉表情符号”)的速度中轻柔的手动抚摸是否可以在实验室模拟的社交媒体沟通过程中传达出更多的社交支持感觉和其他亲社会意图的感觉,而(1)与(1)在CT亚波特速度上相比,与(1)触摸相比,要么在ct sub-opoptimal velocimal Velocal veloctimal veloctimal veloctimal vivations(或2)标准(2)标准(2)。参与者(n = 36)与次级最佳速度或视觉表情符相比,CT最佳意图具有更大的社会意图。在第二次预先进行的研究(n = 52)中,我们调查了将视觉表情符和触觉表情符号结合在一起,这次是通过软机器人设备以CT最佳速度传递的,可以增强亲社会意图的感知并影响参与者的生理度量,例如,比较的电导率(例如,相对的电导率)。Visuotac-瓷砖表情符号总体上传达了更多的社会意图,而在焦虑的参与者中,对物理学措施比视觉情绪更大。结果表明,情感社交媒体沟通可以通过触觉表情符号有意义地增强。
自闭症谱系障碍 (ASD) 的特征是社交和认知技能受损、情绪障碍、焦虑和抑郁。传统的 ASD 诊断过程冗长,迫切需要早期进行有意义的干预。最近,不同的研究提出了通过使用深度神经网络 (DNN) 和机器学习算法进行情绪预测来进行 ASD 诊断和干预的潜力。然而,这些系统缺乏通过多个基准数据集进行广泛的大规模特征提取 (LSFE) 分析。需要进行 LSFE 分析来识别和利用最相关的特征和通道进行情绪识别和 ASD 预测。考虑到这些挑战,我们首次分析和评估了一个广泛的特征集,以使用 LSFE 和特征选择算法 (FSA) 选择最佳特征。使用不同的最佳情况 FSA 确定了一组最多八个最合适的通道。还确定了通道和特征的主体重要性。所提出的方法使用线性支持向量机 (LSVM) 分类器进行情绪预测时,最佳准确率、精确率和召回率分别为 95%、92% 和 90%。它还为 ASD 分类提供了 100% 的最佳准确率、精确率和召回率。这项工作利用了文献中迄今为止报告的最大数量的基准数据集 (5) 和主题 (99) 进行验证。本文提出和使用的 LSVM 分类算法的复杂度明显低于最近 ASD 和情绪预测系统中使用的 DNN、卷积神经网络 (CNN)、朴素贝叶斯和动态图 CNN。
摘要:目的:探讨针对性护理干预联合心理辅导对广泛耐药结核病(XDR-TB)患者生活质量、负性情绪及并发症的影响。方法:前瞻性研究,选取2017年1月至2020年12月河北省胸科医院收治的88例XDR-TB患者。所有患者按Excel中的RANDBETWEEN(1,2)函数分组,研究组(44例)每2例患者分配1例至对照组(41例)。对照组实施常规护理,研究组实施针对性护理干预联合心理辅导。比较两组患者干预前后焦虑自评量表(SAS)评分、抑郁自评量表(SDS)评分、自我管理能力评分、治疗依从性、痰菌转阴率、复查率、生活质量、并发症及护理满意度。结果:干预后研究组SAS、SDS、自我管理能力评分、依从率、痰菌阴转率、复查率、生活质量均高于对照组(均P<0.05);研究组并发症发生率低于对照组,护理满意度高于对照组(均P<0.05)。结论:针对性护理干预联合心理疏导较常规护理能显著改善广泛耐药结核病患者的生活质量,减少患者负性情绪,降低并发症发生率。