单粒子冷冻电子显微镜(Cryo-EM)已成为主流结构生物学技术之一,因为它具有确定动态生物分子的高分辨率结构的能力。但是,冷冻EM数据获取仍然是昂贵且劳动力密集的,需要大量的专业知识。结构生物学家需要一种更高效,更客观的方法来在有限的时间范围内收集最佳数据。我们将Cryo-EM数据收集任务制定为这项工作中的优化问题。目标是最大化指定期间拍摄的好图像的总数。我们表明,强化学习是一种有效的方法来计划低温EM数据收集,并成功导航异质的低温EM网格。我们开发的AP-PRACH,CRYORL,在类似设置下的数据收集的平均用户表现出了更好的表现。
摘要我们提出了一种大型语言模型(LLM)的ChatScene-利用LLM的能力来为自动驾驶汽车的安全至关重要方案。给定的非结构化语言指令,代理首先使用LLMS生成文本描述的流量方案。这些SCE-NARIO描述随后被分解为几个子描述,以获取指定的细节,例如行为和车辆的位置。代理然后将文本描述的子筛选性转换为特定于域的语言,然后在模拟器中生成用于预测和控制的实际代码,从而促进了Carla Simulation Envimonment中的不同和复杂场景的创建。我们代理的关键部分是一个全面的知识检索组件,它通过训练包含情景描述和代码对的知识数据库来有效地将特定的文本描述转化为相应的特定领域代码段。广泛的实验结果强调了Chatscene在提高自动驾驶汽车安全性方面的功效。对于Intance,ChatScene产生的方案显示,与最先进的基线相比,在针对不同的基于强化的基于学习的自我车辆进行测试时,碰撞率增加了15%。此外,我们表明,通过使用我们生成的安全 - 关键方案来微调不同的基于RL的自主驾驶模型,它们可以降低碰撞率9%,超过Cur-Current Sota方法。代码可在https://github.com/javyduck/chatscene上找到。ChatScene有效地弥合了交通情况的文本描述与实际CARLA模拟之间的差距,从而提供了一种统一的方式,以方便地生成安全至关重要的方案,以进行安全测试和改进AVS。
培养学生对学习的兴趣被认为具有许多积极的下游效果。大型语言模型已经开辟了新的范围,以生成满足自己利益的内容,但目前尚不清楚这种自定义的方式在多大程度上可以对学习产生积极的效率。为了探索这个新颖的维度,我们进行了一项受试者间研究(n = 272),其具有生成的AI词汇学习应用程序的不同变化,使用户可以个性化他们的学习示例。参与者被随机分配给对照(句子来自先前存在的文本)或实验条件(根据用户的文本输入而生成的sen tence或短篇小说)。虽然我们没有观察到结构之间的学习绩效的不同,但分析表明,生成的AI驱动的环境个性化的个性化阳性的学习动机。我们不知道这些结果与以前的fndings有何关系,并强调了它们对使用生成AI进行个性化学习的新兴费用的意义。
长效电池使可再生能源即使在极端天气条件下也能可靠地为电网供电,为无碳未来铺平了道路。马萨诸塞州萨默维尔 — Form Energy 是一家为电网开发超低成本、长效储能的公司,今天宣布与明尼苏达州公用事业公司 Great River Energy 签署合同,共同部署位于明尼苏达州剑桥的 1MW/150MWh 试点项目。Great River Energy 是明尼苏达州第二大电力公司,也是美国第五大发电和输电合作社。该系统将是 Form Energy 专有长效储能系统的首次商业部署。Form Energy 的水空气电池系统利用了地球上一些最安全、最便宜、最丰富的材料,为低成本、长效储能转型提供了一条清晰的道路。 Great River Energy 的项目将是一个 1 兆瓦的电网连接存储系统,能够连续提供 150 小时的额定功率,远远超过目前公用事业规模部署的锂离子电池的两到四小时使用时间。这个持续时间允许从存储中为电网提供全新的可靠性功能,而这种功能过去只有热发电资源才能提供。在决定部署试点项目之前,Form Energy 使用 Formware™ 对 Great River Energy 独特的系统特性进行了投资组合优化研究,Formware™ 是一种专有软件分析平台,旨在帮助能源规划人员模拟未来电网。Formware™ 专门用于在系统级别模拟高渗透率可再生能源,并确定所有类型的存储如何实现具有成本效益的可再生能源整合。该工具可帮助规划人员减少极端天气事件的影响,并在各种未来电网情景下最大限度地减少商品价格的不确定性。 Form Energy 分析和业务开发高级副总裁 Marco Ferrara 表示:“为了了解如何最好地实现能源转型,需要新的分析工具,Formware™ 使我们能够与 GRE 合作,系统地、彻底地了解我们的资产可以为其系统带来的价值。”“Great River Energy 很高兴与 Form Energy 合作开展这一重要项目。电网越来越多地由可再生能源供应。商业上可行的长期存储可以通过确保由发电厂产生的电力来提高可靠性。
摘要 — 本文介绍了一种利用 cocotb 和 pyuvm 框架集成已建立的 SystemVerilog 验证 IP (SV-VIP) 来增强 Python 验证生态系统的新策略。基于 Python 的环境在验证社区中逐渐获得认可,人们正在探索其成为未来验证流程主流的潜力。这种方法利用了已建立的 SystemVerilog 生态系统,可以在 Python 设置中有效重用 SV-VIP。通过利用直接编程接口 (DPI-C) 和 ctypes 库,我们的方法可确保 Python 测试台和 SV-VIP 之间的无缝集成。这种集成不仅利用了 Python 的简单性和可读性,还增强了其处理复杂硬件验证任务的能力。本文通过两个实际实现说明了这种方法。它展示了 Python 作为一种强大且适应性强的验证语言不断发展的意义,并弥合了软件灵活性和硬件验证需求之间的当前鸿沟。
随着人工智能改变公共部门的运营,政府努力将技术创新整合到连贯的系统中,以进行有效的服务提供。本文介绍了算法状态体系结构(ASA),这是一个新颖的四层框架,概念化了数字公共基础架构,数据 - 实体,算法,政府/治理的方式以及GovTech在AI-na-abled州中作为一个集成系统的相互作用。与将这些的方法视为平行发展不同,ASA将它们定位为具有特定启示关系和反馈机制的相互依赖层。通过对爱沙尼亚,新加坡,印度和英国实施的比较分析,我们演示了基础数字基础架构如何实现系统数据收集,从而为算法决策过程提供动力,最终在面向用户的服务中表现出来。我们的分析表明,成功的实施需要在所有层次上平衡发展,特别关注它们之间的集成机制。该框架通过弥合数字政府研究的先前断开的领域,确定影响实施成功的关键依赖性,并提供一种结构化方法来分析支持AI-ai-ai-abable政府系统的成熟度和发展途径。关键字:算法状态体系结构(ASA),数字公共基础设施(DPI),政策数据(DFP),算法政府 /治理(AG),Govtech,AI-NI-Spair Mappend Goildment,公共部门转型< / div> < / div>
gwalior,国会议员摘要:在本评论文章中研究了将深度学习方法纳入公共安全视频调查系统,并特别注意其改善实时监视和预防犯罪的转型能力。随着机器学习和计算机视觉的快速发展,包括卷积神经网络在内的深度学习模型以及经常性的神经网络(RNN)表明,在自动化视频监视任务(包括查找对象,活动识别和异常检测)的自动化能力方面表现出惊人的能力。这些模型对公共安全行动非常有用,因为它们可以使人群管理,可疑行为的识别以及盗窃或殴打等特定的行动。在研究这些系统的技术架构时,本文强调了零件边缘计算和云计算的效果,以允许可扩展性和实时数据处理。Edge Computing提供局部处理以降低延迟并增加响应时间,但基于云的解决方案保证了大量视频信息的完美集成和存储。此外,该研究解决了在公共安全中应用深度学习的困难,包括隐私问题,数据安全,道德问题以及法律的必要性。尽管存在这些困难,但该研究强调了这些技术如何帮助增强安全操作,降低人为错误并提高运营效率。未来的研究方向(例如改善模型的鲁棒性,结合多模式数据源,创建更符合道德和透明的人工智能系统)也来自审查。最后,本文提供了公共安全视频调查系统中深度学习的当前情况和未来可能性的详细概述,从而阐明了他们改变公共安全现场的能力。关键字:深度学习,公共安全,视频监视,异常检测,云计算
人工智能(AI)正在迅速改变各个部门,牙科实践管理也不例外。本文探讨了AI支持的IT系统的潜力,可以革新牙科操作,提高效率,患者护理和整体实践结果。通过自动执行常规任务,例如预约时间表,患者沟通和计费,AI使员工的时间增加了更复杂和以患者为中心的活动。此外,AI算法可以分析患者数据,包括X光片和临床记录,以提供有价值的诊断,治疗计划和个性化护理的见解。本文研究了AI在牙科实践管理中的关键应用,包括患者关系管理(PRM),临床决策支持,操作优化和欺诈检测。它还讨论了AI采用的好处,例如提高效率,降低成本,增强的患者满意度和数据驱动的决策。最后,本文解决了与实施AI系统相关的挑战和考虑因素,包括数据隐私,与现有系统集成以及道德含义。调查结果表明,AI启用的IT系统为改善牙科实践管理并为更好的患者结果做出贡献提供了巨大的潜力。
作为第一步,乌克兰军队专注于将其指挥和控制和将无人系统与常规武器系统相结合到单个杀戮链中,例如炮兵。Kateryna Mykhalko,UA的Tech Force,UA是乌克兰国防制造商协会,与CSIS共享,该协会设想单一杀戮链合并了侦察,并在统一的命令系统中与炮兵合并了无人驾驶飞机(UAV)。,乌克兰部队并没有直接取代传统的炮兵,而是采用较小的罢工无人机来对较小的目标进行精确攻击,侦察无人机识别和追踪。这些小型攻击耗尽了更大,更重要的目标的防御能力,使它们没有受到保护,以进行进一步的决定性炮击。
摘要 - 本文介绍了Robodexvlm,这是一个用于机器人任务计划的创新框架,并掌握了配备灵敏手的协作操纵器的检测。以前的方法着眼于简化且有限的操纵任务,这些任务通常忽略了以长期培训方式抓住各种对象相关的复杂性。相比之下,我们提出的框架利用灵巧的手能够抓住不同形状和大小的对象,同时根据自然语言命令执行任务。所提出的方法具有以下核心组件:首先,设计了一个具有任务级恢复机制的稳健任务计划器,该机制设计了视觉语言模型(VLMS),这使系统能够解释和执行长序列任务。第二,基于机器人运动学和正式方法提出了语言引导的灵活掌握感知算法,该方法是针对带有多种物体和命令的零摄像的灵巧操作量身定制的。全面的实验结果验证了Robodexvlm在处理长层场景和执行灵巧抓握方面的有效性,适应性和鲁棒性。这些结果突出了该框架在复杂环境中运行的能力,展示了其进行开放式灵巧操作的潜力。我们的开源项目页面可以在https://henryhcliu.github.io/robodexvlm上找到。