对于数据库管理系统(DBMSS)来说,实现高吞吐量和低承诺潜伏期一直是一个艰巨的挑战。正如我们在本文中所显示的那样,现有的提交处理协议无法完全利用现代的NVME SSD来提供高吞吐量和低延迟耐用的提交。因此,我们提出了自主提交,这是第一个完全利用现代NVME SSD来实现这两个目标的提交协议。我们的方法可以说明SSD的高平行性和低写入延迟,使工人能够以较小的批量清楚地编写日志,从而微不足道,从而使日志记录I/O对承诺延迟的影响很小。另外,通过平行确认程序,DBMS通过一组交易来检查其提交状态,我们可以减轻高通量工作负载中的单线读取提交操作导致的过度延迟。我们的实验结果表明,自主提交可在广泛的工作量上实现出色的可伸缩性和低延节耐用性。
推荐引用推荐引用fadhil,al-shumoos,“工程THP-1细胞使纵向报告基因成像能够评估脱皮的脂肪组织水凝胶作为人单核细胞的递送平台”(2024)。电子论文和论文存储库。10645。https://ir.lib.uwo.ca/etd/10645
Schlage® 移动式多技术读卡器旨在简化您的门禁解决方案,并按照您自己的节奏轻松从现有感应系统过渡到安全、加密的卡技术或移动解决方案,而无需更换读卡器。三种可用型号可满足任何需求,并可与多种凭证形式(包括腕带、卡、遥控器和标签)配合使用。
摘要 欧盟委员会、欧洲航天局和成员国在地球观测下游领域的投资正促进创新应用的开发和运营,一些政府和工业客户正在电子政务和工业 4.0 计划中逐步采用这些应用。在这种背景下,大学必须承担起超越知识提供者的新角色:它们需要成为创新的共同创造者和科学 2.0 原则的关键参与者。FabSpace 2.0 是一个由 H2020 欧盟计划资助的项目,旨在通过大学的催化作用,促进地球观测 (EO) 和地理空间信息 (GI) 的开放式创新,将学生、研究人员、中小企业、民间社会组织、企业和公共当局聚集在一起,解决日常挑战。为此,该项目建立并运营开放的创新空间,以使用 EO 数据和 GI 技术创建创新应用程序和服务。为了实现能力和最佳实践的交叉交流,已在法国、比利时、德国、希腊、意大利和波兰建立了由六个创始 FabSpaces 组成的欧洲网络,并通过征集意向书,将该网络扩展到欧洲和国际层面的 14 个新 FabSpaces。本文介绍了 FabSpace 2.0 项目,描述了由 EO 和 GI 推动的开放式创新所采用的方法,并提供了项目实施头两年取得的第一组成果和结果。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
†同等贡献 *相应的作者隶属关系:1个生物医学工程的人工智能部门,弗里德里希 - 亚历山大 - 大学 - 埃尔兰根 - 纽伦伯格;德国埃尔兰根。2信息工程和数学系,UniversitàDegliStudi di Siena;意大利锡耶纳。 3 Querschnittzentrum Rummelsberg,Krankenhaus Rummelsberg GmbH;德国Schwarzenbruck。 *通讯作者。 电子邮件:Alessandro.del.vecchio@fau.de,dprattichizzo@unisi.it摘要:恢复手功能是四项运动员的最高优先事项之一。 然而,对于运动完全脊髓损伤的个体,当前恢复基本手动运动仍然有限。 在这项研究中,我们提出了一种非侵入性神经学界面,该界面直接转化了较低的运动神经元活动,该活动曾经编码手的开口和闭合到超级机器人机器人的第六指中。 我们重新启用了三个患有慢性(> 8年)的人完全宫颈脊髓损伤,以抓住对日常生活重要的物体,具有控制手指屈曲和扩展的相同神经输入。 经过几分钟的培训,参与者直观地调节了电动机单元的排放活动,从而控制了手势和关闭。 然后使用这些电动机单元按比例地控制机器人第六指。 所有参与者成功执行了各种掌握任务,这些任务需要数字上的相当大的力量,例如,通过拧开帽子打开瓶子。 这可以显着改善瘫痪者的生活质量。2信息工程和数学系,UniversitàDegliStudi di Siena;意大利锡耶纳。3 Querschnittzentrum Rummelsberg,Krankenhaus Rummelsberg GmbH;德国Schwarzenbruck。*通讯作者。电子邮件:Alessandro.del.vecchio@fau.de,dprattichizzo@unisi.it摘要:恢复手功能是四项运动员的最高优先事项之一。然而,对于运动完全脊髓损伤的个体,当前恢复基本手动运动仍然有限。在这项研究中,我们提出了一种非侵入性神经学界面,该界面直接转化了较低的运动神经元活动,该活动曾经编码手的开口和闭合到超级机器人机器人的第六指中。我们重新启用了三个患有慢性(> 8年)的人完全宫颈脊髓损伤,以抓住对日常生活重要的物体,具有控制手指屈曲和扩展的相同神经输入。经过几分钟的培训,参与者直观地调节了电动机单元的排放活动,从而控制了手势和关闭。然后使用这些电动机单元按比例地控制机器人第六指。所有参与者成功执行了各种掌握任务,这些任务需要数字上的相当大的力量,例如,通过拧开帽子打开瓶子。这可以显着改善瘫痪者的生活质量。我们的发现提出了协助手部功能的变革性步骤,提供了直观且非侵入性的神经合法界面,而无需学习新的运动技能,因为参与者使用与受伤前相同的运动命令。主文本:简介恢复手功能的关键重点是脊柱α运动神经元的活性,这是神经肌肉系统的最后电动途径。众所周知,即使被归类为完整的脊髓损伤(SCI)的个体,也可能保留1-4损伤高于损伤水平上方和之下的一些较不幸的神经连接。在先前涉及具有运动SCI的个体(八个具有C5-C6损伤水平的参与者)的研究中,我们证明了使用高密度表面肌电图(HDSEMG)通过非侵入性神经界面进行任务调节的运动单位,从而实现了手指运动的解码2。所有参与者在特定的电动机单位和
摘要:柔性金属有机骨架 (MOF) 在外界刺激下会发生可逆的结构转变。某些 MOF 的一个有趣特性是它们能够响应特定客体而弯曲,从而实现选择性分离。在这里,我们介绍了 MUF-15-OMe ([Co 6 (μ 3 -OH) 2 (ipa-OMe) 5 (H 2 O) 4 ]),它是 MUF-15 的一种变体,由通过 5-甲氧基间苯二甲酸酯 (ipa-OMe) 配体连接的六核钴 (II) 簇组成。MUF-15 本身具有间苯二甲酸酯连接基,在吸收常见气体时不灵活。另一方面,MUF-15-OMe 在压力低于 1 bar 时会弯曲 CO 2 和 C2 烃类等气体,这由其气体吸附等温线中的不同步骤揭示。计算分析表明,潜在机制涉及骨架连接体中羧基之一的部分分离。通过在多元骨架中用间苯二甲酸酯配体替换部分 ipa-OMe,可以调节诱导骨架动力学所需的气压。MUF-15-OMe 的弯曲为吸附特定的额外气体分子打开了空间。这增强了 CO 2 和 N 2 的分离,并使得通过量子筛分能够区分 H 2 和 D 2。通过清楚地说明灵活性如何区分气体混合物,这项研究为使用动态 MOF 进行具有挑战性的分离奠定了基础。
锂离子电池(LIBS)显着影响了日常生活,在各种行业中找到了广泛的应用,例如消费电子,电动汽车,医疗设备,航空航天和电动工具。但是,由于与其他电池相比,由于对LIB的需求迅速增加,由于对LIB的需求迅速增加,因此它们仍然妨碍其广泛的应用,因此它们仍然面临问题(即,由于树突繁殖,制造成本,随机孔隙和基本和平面几何形式引起的安全性。添加剂制造(AM)是一种在储能设备中创建精确和可编程结构的有前途的技术。本综述首先总结了基于每种AM技术的当前趋势和局限性的光,素描,粉末和基于喷射的3D打印方法。本文还深入研究了3D打印的电极(阳极和阴极)和固态电解质,用于LIBS,强调当前的最新材料,制造方法和性能/性能/性能。此外,AM在电化学能源存储(EES)应用中的当前挑战,包括有限的材料,低处理精确度,用于完整电池打印的代码/制造概念,机器学习(ML)/人工智能(AI),用于处理优化和数据分析和数据分析,环境风险,以及4D打印的电位。