图 6 示例性注意力矩阵,可视化三位参与者在收敛时的注意力得分(来自随机选择的训练样本)(值越亮表示注意力得分越高)。解码器中的时间步长在 y 轴上表示,编码器的时间步长在 x 轴上表示。对角线结构表明注意力得分在时间域上是很好地对齐的,例如输出中的后续步骤关注输入中的后续步骤。该图还表明,填充输入 sEEG 序列(语音规划和理解)可能是不必要的,因为没有太多注意力放在第一个和最后一个输入步骤上。
摘要。多模式图像的使用通常可以改善分段。但是,由于临床限制,完整的多模式数据集通常不可用。为了解决这个问题,我们提出了一个新颖的mul-timodal分割框架,该框架可通过使用利益区域(ROI)细心的模态完成,可以使缺少模态固定。我们使用ROI专注的跳过连接专注于与分割相关的收件,以及结合肿瘤ROI的关注点和分割概率图的关节歧视者,以学习与分割与分割相关的共享潜在表示。我们的方法在脑部分割挑战数据集中得到了285例,该数据集的全部肿瘤,肿瘤核心和增强肿瘤的三个区域。它也是在缺血性卒中病变分割挑战数据集上的带有28例梗塞病变的阀门。我们的方法在强大的多模式分割中优于最先进的方法,分别为三种类型的脑肿瘤区域的平均骰子分别为84.15%,75.59%和54.90%,中风病变的平均骰子为48.29%。我们的方法可以改善需要多模式图像的临床工作流程。
对机器任务的深视频压缩(DVC)的事先研究通常需要为每个特定任务培训一个独特的编解码器,从而规定每个任务的专用解码器。相比之下,传统视频编解码器采用了flex ible编码器控制器,从而通过模式预测等机制使Single编解码器适应了不同的任务。从中汲取灵感,我们引入了一个创新的编码器控制器,以用于机器的深度视频压缩。此控制器具有模式预测和一组图片(GOP)选择模块。我们的AP-ARACH在编码阶段集中控制控制,从而允许跨不同任务(例如检测和跟踪)进行适应性的编码器调整,同时与标准的预训练的DVC解码器保持合理性。示例证明我们的方法是在具有各种现有预训练的DVC的多个任务中适用的。此外,广泛的实验表明,对于不同的任务,我们的方法比以前的DVC比以前的DVC大约25%,只有一个预先训练的解码器。
摘要。疾病进展模型对于理解退行性疾病至关重要。混合效应模型一直用于模拟临床评估或从医学图像中提取的生物标志物,允许在任何时间点进行缺失数据的填补和预测。然而,这种进展模型很少用于整个医学图像。在这项工作中,变分自动编码器与时间线性混合效应模型相结合,以学习数据的潜在表示,使得各个轨迹随时间遵循直线,并以一些可解释的参数为特征。设计了一个蒙特卡罗估计器来迭代优化网络和统计模型。我们将此方法应用于合成数据集,以说明时间依赖性变化与受试者间变异性之间的分离,以及该方法的预测能力。然后,我们将其应用于来自阿尔茨海默病神经影像计划 (ADNI) 的 3D MRI 和 FDG-PET 数据,以恢复大脑结构和代谢改变的详细模式。
动机:抑制剂 - 激酶结合亲和力的准确预测对于药物发现和医疗应用至关重要,尤其是在治疗诸如癌症之类的疾病中。现有的预测抑制剂 - 激酶亲和力的方法仍然面临挑战,包括数据表达不足,功能提取有限和性能低。尽管通过人工智能(AI)方法(尤其是深度学习技术)取得了进展,但许多当前的方法未能捕获激酶与抑制剂之间的复杂相互作用。因此,有必要开发更先进的方法来解决抑制剂 - 激酶结合预测中的现有问题。结果:这项研究提出了Kinhibhib,这是抑制剂 - 激酶结合亲和力预测指标的新型框架。kinhibit会整合自我监督的预训练的预训练的分子编码器和蛋白质语言模型(ESM-S),以有效提取特征。kinhibit还采用特征融合方法来优化抑制剂和激酶特征的融合。实验结果证明了这种方法的优越性,在三种MAPK信号途径激酶的抑制剂预测任务中,精度达到了92.6%的精度:RAF蛋白激酶(RAF),有丝分裂原激活的蛋白激活蛋白激酶激酶激酶(MEK)和细胞外信号调节激酶(ERK)。此外,该框架在包含200多个激酶的数据集上达到了令人印象深刻的精度。这项研究为药物筛查和生物科学提供了有希望的有效的工具。
动机:抑制剂 - 激酶结合亲和力的准确预测对于药物发现和医疗应用至关重要,尤其是在治疗诸如癌症之类的疾病中。现有的预测抑制剂 - 激酶亲和力的方法仍然面临挑战,包括数据表达不足,功能提取有限和性能低。尽管通过人工智能(AI)方法(尤其是深度学习技术)取得了进展,但许多当前的方法未能捕获激酶与抑制剂之间的复杂相互作用。因此,有必要开发更先进的方法来解决抑制剂 - 激酶结合预测中的现有问题。结果:这项研究提出了Kinhibhib,这是抑制剂 - 激酶结合亲和力预测指标的新型框架。kinhibit会整合自我监督的预训练的预训练的分子编码器和蛋白质语言模型(ESM-S),以有效提取特征。kinhibit还采用特征融合方法来优化抑制剂和激酶特征的融合。实验结果证明了这种方法的优越性,在三种MAPK信号途径激酶的抑制剂预测任务中,精度达到了92.6%的精度:RAF蛋白激酶(RAF),有丝分裂原激活的蛋白激活蛋白激酶激酶激酶(MEK)和细胞外信号调节激酶(ERK)。此外,该框架在包含200多个激酶的数据集上达到了令人印象深刻的精度。这项研究为药物筛查和生物科学提供了有希望的有效的工具。
图 E 1 用于预测 MEG 活动的深度循环编码器 (DRE) 模型的表示。被掩蔽的 MEG pt ⊙ xt 从底部进入网络,连同控制表示 ut 和主题嵌入 s 。编码器使用卷积和 ReLU 非线性转换输入。然后,LSTM 对隐藏状态序列 ht 进行建模,并将其转换回 MEG 活动估计 ˆ xt 。Conv 1 d ( C in , C out , K, S ) 表示随时间进行的卷积,其中输入通道为 C in,输出通道为 C out,内核大小为 K,步幅为 S。类似地,ConvTransposed 1 d ( C in , C out , K, S ) 表示随时间进行的转置卷积。
摘要:基于模型的强化学习可以有效提高强化学习的样本效率,但是该方法中的环境模型有错误。模型错误可能会误导策略优化,从而导致次优政策。为了提高环境模型的概括能力,现有方法通常使用集合模型或贝叶斯模型来构建环境模型。但是,这些方法在计算密集型和复杂更新。由于生成的模型可以描述环境的随机性质,因此本文提出了一种基于有条件的自动编码器(CVAE)的基于模型的增强学习方法。在本文中,我们使用CVAE来学习与任务相关的表示形式,并应用生成模型来预测环境变化。考虑到多步误差积累的问题,模型适应用于最大程度地减少模拟和真实数据分布之间的差异。此外,该实验证实了所提出的方法可以学习与任务相关的表示并加速政策学习。
上下文:随着摩尔定律的衰落,软件行业正在为寻找持续性能增强的替代解决方案而越来越重要。近年来,软件性能优化的显着性和研究结果一直在上升,尤其是随着L arge l Anguage M Odel S(LLMS)推动的进步。然而,纠正性能缺陷的传统策略在竞争代码效率优化水平上显示出很大的限制,并且对该主题的研究令人惊讶。目的:本研究旨在解决该领域的研究差距,从而为遇到的各种挑战提供实用的解决方案。具体来说,我们已经克服了传统绩效错误整流策略的限制,并开发了针对竞争性代码效率优化领域量身定制的a andel model(LM)。方法:我们引入了电子代码,一个高级程序合成LM。受到专家LMS最近成功的启发,我们设计了一个名为专家编码组的创新结构。该结构采用多个专家编码器来提取针对不同输入类型的功能。我们在竞争性数据集中评估了电子代码对其他领先模型的性能,并进行了深入的消融实验。结果:在系统评估后,电子码的代码效率提高了54.98%,明显优于其他高级模型。在消融实验中,我们进一步验证了专家编码组和电子代码中其他组件的重要性。结论:研究结果表明,专家编码组可以有效地处理效率优化任务的各种投入,从而大大提高了模型的性能。总而言之,本研究铺平了新的途径,用于开发系统和方法,以帮助程序员编写有效的代码。
摘要:诸如ChatGpt和其他大型语言模型(LLM)等变压器网络的功能引起了世界的关注。其性能基础的至关重要的计算机制依赖于将完整的输入序列(例如,句子中的所有单词)转换为一个长的“编码向量”,该序列使变压器可以在自然序列中学习长距离的时间依赖性。具体来说,应用于此编码向量的“自我注意力”通过计算输入序列中的单词对之间的关联来增强变形金刚中的时间上下文。我们建议,跨单个皮质区域或以整个脑规模的多个区域传播的神经活动波可以实施类似的编码原理。通过将最新的输入历史记录到每个时间时刻,皮层波可以使时间上下文从感觉输入的序列中提取,这是变压器中使用的计算原理。