由于元件尺寸极小且功耗巨大,基于互补金属氧化物半导体 (CMOS) 技术的器件性能有限。确实,许多研究人员正在考虑如何使用低功耗方法在纳米级构建复杂的逻辑电路。为了降低设计密度并实现高速切换,有必要考虑 CMOS 替代品。量子点细胞自动机 (QCA) 是一种新型无晶体管范例,可用于创建具有高密度和太赫兹速度切换的纳米级器件。有许多参考文献 [1-3] 深入探讨了实验特性和物理实现(金属岛、半导体、磁性和分子 QCA)。第一个基于原始材料的功能量子单元刚刚建成 [4]。CMOS 技术的一个问题是它倾向于耗散大量电能。借助可逆计算,可以防止计算过程中的能量损失,这已被提出 [5]。研究证实了这一点。在可逆逻辑中,可逆门起着关键作用。研究界已提出了几种类型的可逆门 [5]。Toffoli 门因其可执行多种任务而得到广泛应用 [6-9]。
*1 环境耐久性:电池的工作温度范围请参阅 Maxell 全固态电池网页详情。https://biz.maxell.com/en/rechargeable_batteries/allsolidstate.html *2 绝对编码器:绝对编码器是一种传感器设备,常用于汽车生产线、机床等工业机器人。其目的是检测机械臂旋转位移和类似测量的绝对值。 *3 可通过回流焊进行表面贴装:在最高温度 245°C 下回流不会降低容量和负载特性等基本特性。
摘要 - 锂离子(Li-ion)电池的使用已在各个行业中广泛普及,从供电便携式电子设备到推动电动汽车和支持储能系统。锂离子电池可靠性中的一个核心挑战在于准确预测其剩余使用寿命(RUL),这是积极维护和预测分析的关键措施。本研究提出了一种新颖的方法,该方法利用了多个Denoising模块的功能,每个模块都训练了解决电池数据中通常遇到的特定类型的噪声。具体而言,使用Denoising自动编码器和小波Denoiser用于生成编码/分解表示形式,随后通过专用的自我发明变压器编码来处理。在对NASA和CALCE数据进行了广泛的实验之后,在一组不同的噪声模式下估算了一系列健康指标值。这些数据上报告的错误指标与最近文献中报道的最先进的相当或更好。索引术语 - 验证和健康管理,剩余使用寿命,自动编码器,锂离子电池,变压器,电池健康
在扩大大型语言模型方面的最新进展表现出令人印象深刻的能力,可以在各种自然语言任务中进行几次学习。但是,一个关键的限制是,这些语言模型从根本上缺乏视觉感知的基础 - 扩展到现实世界任务所需的关键属性,例如在视觉问题上的答案和机器人技术中。虽然先前的作品在很大程度上通过预处理或微调将图像与文本联系在一起,但由于结合了策划的大量数据集和较大的计算负担,学习对齐方式通常是昂贵的。In order to resolve these limitations, we propose a simple yet effective approach called L anguage- Q uantized A uto E ncoder (LQAE), a modification of VQ-VAE that learns to align text-image data in an unsupervised manner by leveraging pretrained language model denoisers ( e .g .bert)。我们的主要思想是通过使用验证的语言代码簿直接量化图像嵌入来编码图像作为文本令牌的序列。然后,我们将量化嵌入的蒙版版本送入BERT,以重建原始输入。这样做,LQAE学会了用相似的文本令牌表示相似的图像,从而在不使用对齐的文本图像对的情况下对齐这两种方式。我们向LQAE显示了学习文本对准图像令牌,这些图像令牌可以通过大型语言模型启用几示多式模式学习,在诸如图像分类和VQA等任务中的基线方法优于基线方法,同时需要1-10张图像 - text Pairs 1。
如今,快速、轻松、方便地访问我们的私人信息对于开展个人和专业活动至关重要。在大多数情况下,这些信息很敏感,由于其重要性和缺乏安全协议,可能会被盗用。在本研究中,我们提出了一种基于脑电图 (EEG) 信号的时间不变加密密钥生成机制。我们采用离散小波变换和自动编码器从 EEG 信号中提取生物特征。利用这些特征,我们构建了一个方案来生成安全种子,这些种子可用作安全哈希函数的输入并获取加密密钥。所提出的机制保护了用户的隐私,因为加密密钥是为收到的每个新 EEG 信号生成的,无需存储密钥、以前的 EEG 信号或任何其他信息。结果表明,所提出的机制可以抵御随机攻击,因为报告的错误接受率为 0%,同时在不到 500 毫秒的时间内生成熵为 0.968 的种子。
摘要 本文提出了一个综合框架,通过集成二阶滑模控制 (2-SMC) 和基于机器学习和人工智能的先进异常检测和预测系统来提高四旋翼无人机的安全性和可靠性。本文提出了一种新的滑动流形方法,分为两个子系统,用于精确的位置和姿态跟踪,解决了设计四旋翼控制器的挑战。本文还使用 Hurwitz 稳定性分析对滑动流形的非线性系数进行了详细分析。它通过大量的模拟结果证明了所提方法的有效性。为了进一步评估四旋翼的安全性和可靠性,将异常检测和预测系统与位置和姿态跟踪控制相结合。该系统利用机器学习和人工智能技术实时识别和预测异常行为或故障,使四旋翼能够快速有效地应对危急情况。所提出的框架为设计四旋翼无人机的稳健和安全控制器提供了一种有前途的方法。它展示了先进的机器学习和人工智能技术在提高自主系统安全性和可靠性方面的潜力。
摘要(150个单词)现代镜头设计能够解决> 10吉像素,而相机框架速率和高光谱成像的进步使Terapixel/S数据获取成为了真正的可能性。阻止这种高数据率系统的主要瓶颈是功耗和数据存储。在这项工作中,我们表明模拟光子编码器可以应对这一挑战,从而可以使用比数字电子设备低的功率来实现高速图像压缩。我们的方法依赖于硅 - 光子学前端来压缩原始图像数据,预言了能量密集型图像调理并减少数据存储要求。压缩方案使用被动无序的光子结构来对原始图像数据进行内核型随机投影,其功耗最少和低潜伏期。后端神经网络可以以超过90%的结构相似性重建原始图像。此方案有可能使用小于100 FJ/Pixel处理Terapixel/S数据流,从而为超高分辨率数据和图像采集系统提供了途径。
摘要:大脑是人类控制和交流的中心。因此,保护它并为其提供理想条件非常重要。脑癌仍然是世界上死亡的主要原因之一,并且检测恶性脑肿瘤是医疗图像分割的优先事项。与正常组织相比,脑肿瘤分割任务旨在鉴定属于异常区域的像素。深度学习近年来已经解决了解决这个问题的力量,尤其是类似U-Net的架构。在本文中,我们提出了一个有效的U-NET架构,其中包含三个不同的编码器:VGG-19,Resnet50和MobilenetV2。这是基于转移学习,然后是应用于每个编码器的双向特征金字塔网络,以获得更多的空间相关特征。然后,我们融合了从每个网络的输出中提取的特征图,并通过注意机制将它们合并到我们的解码器中。在Brats 2020数据集上评估了该方法,以分割不同类型的肿瘤,结果在骰子相似性方面表现出良好的性能,整个肿瘤,核心肿瘤和增强肿瘤的系数为0.8741、0.8069和0.7033。
抗干扰措施 使用高度复杂的微电子器件需要始终实施抗干扰和布线概念。现代机器的结构越紧凑,对性能的要求越高,这一点就变得越重要。以下安装说明和建议适用于“正常工业环境”。没有一种解决方案适合所有干扰环境。当采用以下措施时,编码器应处于完美的工作状态: • 在串行线的开始和结束处(例如,控制和最后一个编码器)用 120 电阻器(接收/发送和接收/发送之间)终止串行线。 • 编码器的接线应远离可能造成干扰的电源线。 • 屏蔽电缆横截面积至少为 4 mm²。 • 电缆横截面积至少为 0.14 mm²。 • 屏蔽和 0 V 的接线应尽可能呈放射状排列。 • 不要扭结或卡住电缆。 • 遵守数据表中给出的最小弯曲半径,避免拉伸和剪切载荷。 操作说明 Pepperl+Fuchs 制造的每个编码器都处于完美状态。为了确保这种质量以及无故障运行,必须考虑以下规范: • 避免对外壳(特别是编码器轴)造成任何冲击,以及避免编码器轴的轴向和径向过载。 • 只有在使用合适的联轴器时,才能保证编码器的精度和使用寿命。 • 编码器和后续设备(例如控制)的工作电压必须同时打开和关闭。 • 任何接线工作都必须在系统处于死区的情况下进行。 • 不得超过最大工作电压。设备必须在超低安全电压下运行。 连接电气屏蔽的注意事项 设备的抗干扰能力取决于正确的屏蔽。在这个领域,安装故障经常发生。通常只在一侧应用屏蔽,然后用导线焊接到接地端子,这是 LF 工程中的有效程序。但是,在 EMC 的情况下,适用 HF 工程规则。HF 工程的一个基本目标是以尽可能低的阻抗将 HF 能量传递到地面,否则能量会释放到电缆中。通过与金属表面的大面积连接可实现低阻抗。必须遵守以下说明:• 如果不存在等电位电流风险,则将两侧的屏蔽层大面积地连接到“公共接地”。• 屏蔽层必须穿过绝缘层后面,并且必须夹在张力释放器下方的大表面上。• 如果电缆连接到螺钉型端子,则张力释放器必须连接到接地表面。• 如果使用插头,则应仅安装金属插头(例如带有金属外壳的 D 型插头)。请注意张力释放器与外壳的直接连接。
多形性胶质母细胞瘤是一种侵袭性脑肿瘤,由于其侵袭性生长动力学,其存活率是所有人类癌症中最低的。这些动力学导致复发性肿瘤袋隐藏在医学影像之外,而标准的放射治疗和手术边缘无法覆盖这些肿瘤袋。通过偏微分方程 (PDE) 对肿瘤生长进行数学建模是众所周知的;然而,由于运行时间长、患者间解剖差异大以及忽略患者当前肿瘤的初始条件,它仍未在临床实践中采用。本研究提出了一种多形性胶质母细胞瘤肿瘤演化模型 GlioMod,旨在学习肿瘤浓度和大脑几何形状的时空特征,以制定个性化治疗计划。使用基于 PDE 的建模,从真实患者解剖结构生成 6,000 个合成肿瘤的数据集。我们的模型采用图像到图像回归,使用一种新颖的编码器-解码器架构来预测未来状态下的肿瘤浓度。 GlioMod 的测试是模拟肿瘤生长和重建患者解剖结构,在 900 对未见脑几何结构上与 PDE 求解的未来肿瘤浓度相对应。我们证明,通过神经建模实现的时空背景可以产生针对患者个性化的肿瘤演化预测,并且仍然可以推广到未见解剖结构。其性能在三个方面衡量:(1) 回归误差率、(2) 定量和定性组织一致性,以及 (3) 与最先进的数值求解器相比的运行时间。结果表明,GlioMod 可以高精度地预测肿瘤生长,速度提高了 2 个数量级,因此适合临床使用。GlioMod 是一个开源软件包,其中包括我们研究中从患者生成的合成肿瘤数据。