摘要。本文介绍了 DreamDiffusion,这是一种直接从脑电图 (EEG) 信号生成高质量图像的新方法,无需将想法转化为文本。DreamDiffusion 利用预先训练的文本到图像模型,并采用时间掩蔽信号建模来预训练 EEG 编码器,以获得有效且稳健的 EEG 表示。此外,该方法进一步利用 CLIP 图像编码器提供额外的监督,以更好地将 EEG、文本和图像嵌入与有限的 EEG-图像对对齐。总体而言,所提出的方法克服了使用 EEG 信号进行图像生成的挑战,例如噪声、信息有限和个体差异,并取得了令人鼓舞的结果。定量和定性结果证明了所提方法的有效性,这是朝着便携式和低成本“思想到图像”迈出的重要一步,在神经科学和计算机视觉领域具有潜在的应用。
下一步涉及神经网络模型开发。自动编码器和卷积神经网络(CNN)都是深度学习体系结构,但具有不同的目的,并且是为不同类型的任务而设计的。我们使用了自动编码器和CNN。设计了一个基于自动编码器的体系结构,包括编码器和解码器。编码器通过提取基本特征将输入图像压缩为紧凑的潜在表示,而解码器从压缩图像中重新构造了输入图像。CNN体系结构由多个卷积层组成,然后是合并,完全连接的层,有时是标准化层。cnn是一种监督的学习模型,专为涉及数据中的空间层次结构(例如图像)而设计。提取空间和分层特征(边缘,纹理等)用于分类,细分和对象检测等任务。
遥感场景(RSS)图像分类在城市规划和环境保护等各个领域中起着至关重要的作用。然而,由于较高的阶层间相似性和类内变异性,实现RSS图像的准确性分类对当前卷积神经网络(CNN)基于基于的卷积神经网络(CNN)和基于视觉变压器(VIT)的方法构成了巨大挑战。为了解决这些问题,本文提出了一种新颖的双重编码方法,该方法从特征提取和融合的两个角度来看,名为Master-Slave编码网络(MSE-NET)。基于VIT的主编码器提取了高级语义特征,而基于CNN的从属编码器捕获了相对较低级别的空间结构信息。sec-,为了有效地整合两个编码器的特征信息,本文进一步制定了两种融合策略。第一个策略涉及辅助增强单元(AEU),该单元消除了两个编码器之间的语义差异,可增强对奴隶编码器的空间环境意识并促进有效的特征学习。交互式感知单元(IPU)作为第二种策略,促进了两个编码器表示的相互作用和集成,以提取更具歧视性的特征信息。此外,我们在四个广泛使用的RSS数据集上进行了比较实验,包括RSSCN7,Siri-Whu,空中图像数据集(AID)和NWPU-RESISC45(NWPU45),以验证有效性
•D2 - 从增量编码器发出的脉冲;通过FOD817 OptoCOPLER分离。在输出侧我使用了大约1k电阻器将开放式收集器连接到5V。•D3,D4 - A,B输入来自增量编码器;不需要上拉电阻•D5 - 旋转编码器按钮的输入;不需要上拉电阻•D6 - 用户输出B - 使用晶体管我要切换5V继电器,以打开13.8V TRX电源的功率。不要忘记继电器周围的反平行二极管。请注意,继电器必须为5V,因为最初在电源降低时,Arduino董事会仅由USB(5V)供电。•d7,d8,d9,d10,d11,d12 - 连接到4线设置中使用的2x16字符lcd显示器(RS,E,D4,D5,D5,D6,D7)。r/w输入的LCD显示器已连接到地面,因为只执行了要显示的写入。通过电压分隔器•D13 - 控制显示器的背光;如果不活动较长的背光熄灭•A0 - h-bridge控件,侧面1(左)•A1-H桥控件,侧面2(右)•A2 - A2 - 适用于H-Bridge•A3 - A3 - 用户输出A;类似于用户输出B,但是在我的情况下,我要控制天线开关的24V继电器
我们介绍了超类,这是一种超级简单的分类方法,用于对图像文本数据进行视觉预训练。与与文本编码器对比的对比度剪辑[57]不同,SuperClass直接利用令牌化的原始文本作为监督分类标签,而无需其他文本过滤或选择。由于没有文本编码为对比目标,超级类不需要文本编码器,也不需要像夹子[57]那样保持较大的批量大小。超类在各种下游任务上表现出卓越的性能,包括经典的计算机视觉基准和下游任务的视觉语言。我们进一步探索了超类对模型大小,训练长度或数据大小的缩放行为,并报告了令人鼓舞的结果和剪辑比较。
3。ji,Y.,Zhou,Z.,Liu,H。&Davuluri,R。V. Dnabert:预先训练的双向编码器119来自Transformers模型的DNA语言中DNA语言的表示。生物信息学37,120 2112–2120(2021)。121
现有的基于LIDAR的3D对象检测方法主要采用从划线范式进行训练。不幸的是,这种范式在很大程度上重新确定了大规模标记的数据,其收集可以充分陈述且耗时。自我监管的预训练是一种减轻这种依赖对广泛注释数据的有效且理想的方法。在这项工作中,我们提出了一种有效的掩盖自动编码器预训练框架 - 基于LIDAR的3D对象检测的自动驾驶前训练框架。具体来说,我们提出了鸟类视图(BEV)指导性掩盖策略,以指导3D编码器学习功能表示BEV的角度,并避免在预训练期间使用综合解码器设计。此外,我们还可以学习一个可学习的点令牌,以维持3D编码器的一致的回收字段大小,并进行微调的遮罩云输入。基于自主驾驶场景中室外点云的属性,即,遥远对象的点云更为稀疏,我们提出了点的预测,使3D编码器能够学习位置信息,这对于对象检测至关重要。实验结果表明,BEV-MAE超过了先前的自我监管方法,并实现了有利的预训练效率。此外,基于输血-L,BEV-MAE在基于Nuscenes的基准上获得了73.6 NDS和69.6 MAP的新最先进的3D对象检测结果。源代码将在https://github.com/vdigpku/bev-mae上发布。
4.1 方法概述 4.2 12 度校准示例 4.2.1 -12 度测量 4.2.2 + 12 度测量 4.3 标准(12°)校准示例 4.4 确定 12° 编码器误差 4.5 角度标准校准的不确定性
在广泛的数据集上预先训练的视觉语言模型(VLMS)可以通过将性别信息与特定对象或场景相关联,无意中地学习偏见。当前方法,该方法着重于修改输入并监视模型的输出概率分数的变化,通常从模型组件的角度来全面地偏见。我们提出了一个框架,该框架结合了因果中介分析,以确保并绘制VLM中偏见产生和传播的途径。我们的框架适用于广泛的视觉语言和多模式任务。在这项工作中,我们将其应用于对象检测任务并将其应用于GLIP模型。这种方法使我们能够确定干预措施对模型偏差的直接影响以及干预措施对通过不同模型组件介导的偏差的间接影响。我们的结果表明,图像效果是偏见的主要因素,其影响明显高于文本特征,特别是占MSCOCO和PASCAL-SONTIC数据集中偏见的32.57%和12.63%。值得注意的是,图像编码器的贡献超过了文本编码器和深层融合编码器的贡献。进一步的实验证实,语言和视力方式的贡献是对齐和不集中的。因此,在图像编码器中着重于模糊的性别表示,这对模型偏见做出了最大的贡献,在MSCOCO和PASCAL-SENTENCE数据集中,有效地降低了偏见22.03%和9.04%,并且具有最小的性能损失或增加的计算需求。1
