摘要 人工智能对社会的影响越来越普遍。虽然正在开发创新的教育计划,但人们对学生,尤其是大学前学生如何构建对人工智能核心思想的理解和实践,或者哪些概念最适合哪个年龄段的了解甚少。在本文中,我们讨论了一项针对初中和高中学生的认知访谈研究,以更好地了解学生如何学习人工智能概念。我们旨在阐明以下问题:学生在遇到人工智能概念时能够应用哪些背景知识和经验;哪些概念最容易获得,哪些概念更具挑战性;学生对人工智能问题有哪些误解;以及如何通过利用相关概念(如数学和计算思维)帮助学生理解人工智能概念。这项探索性研究的结果有可能为大学前青少年的人工智能学习提供重要见解。这些初步发现可以为进一步调查提供参考,以便根据循证学习进展和年级水平表现期望来设计学习和评估。
摘要 — 在虚拟环境中,视觉和触觉场景之间的空间差异会对用户的表现和体验产生负面影响。本文展示了在具有接触式触觉显示器的触觉增强虚拟系统中,由于姿势差异而导致的空间差异是如何发生的。为了缓解这个问题,我们提出了视觉引导,这是一种动态操纵视觉场景以补偿差异的算法。在涉及按钮按下任务和±150 mm 和±40 ◦ 之间的空间差异的一对研究中验证了该算法的有效性。实验结果表明,使用该技术的差异试验产生的错误率和速度峰值数量(代表目标运动的数量)与零空间差异试验中达到的相当。此结果也是在无需专门的适应或训练过程的情况下实现的,从而确保用户可以立即使用该算法。一对后续研究还表明,该算法对模拟器晕动症的主观评分影响不大,这表明偶尔使用该算法不会对用户对虚拟环境的体验产生负面影响。我们相信,本文提出的视觉引导算法可用于在结合遭遇式触觉显示的各种触觉训练应用中创造更有用、更引人注目的体验。
将无人机整合到国家空域系统的主要挑战之一是开发能够感知和避免当地空中交通的系统。如果设计得当,这些防撞系统可以提供额外的保护层,以保持当前卓越的航空安全水平。然而,由于其对安全至关重要的性质,需要进行严格的评估,然后才能有足够的信心认证防撞系统用于运营。评估通常包括飞行测试、运营影响研究和数百万次交通相遇的模拟,目的是探索防撞系统的稳健性。这些模拟的关键是所谓的相遇模型,它以代表空域中实际发生的情况的方式描述相遇的统计构成。一个以这种方式经过严格测试的系统是交通警报和防撞系统 (TCAS)。作为 20 世纪 80 年代和 90 年代 TCAS 认证过程的一部分,多个组织通过数百万次模拟近距离接触测试了该系统,并评估了近空中相撞(NMAC,定义为水平距离小于 500 英尺,垂直距离小于 100 英尺)的风险。1–4 最终,这项分析促成了 TCAS 的认证和美国对大型运输飞机配备 TCAS 的授权。最近,欧洲空中导航安全组织和国际民航组织进行了类似的模拟研究,以支持欧洲和世界
2 James O.Young,《迎接超音速飞行的挑战》(加利福尼亚州爱德华兹空军基地:空军飞行测试中心历史办公室,1997 年),第 1-2 页。1-2;John V. Becker,《高速前沿:四个 NACA 计划的案例历史》(华盛顿特区:NASA SP-445,1980 年),特别是。第 95 页。这里应该指出,压缩性的首次研究涉及螺旋桨的尖端速度,日期为 1918 年至 1923 年。关于这些,请特别参阅 John D. Anderson, Jr. 的“超音速飞行研究和突破音障”,摘自《从工程科学到大科学:NACA 和 NASA 科利尔奖研究项目获奖者》,编辑。Pamela Mack(华盛顿特区:NASA SP-4219,1998 年),第66-68 页。本文还对约翰·斯塔克及其同事在 NACA 兰利纪念航空实验室对飞机(而不是螺旋桨)压缩性问题的早期研究进行了出色的报道。
2 James O.Young,《迎接超音速飞行的挑战》(加利福尼亚州爱德华兹空军基地:空军飞行测试中心历史办公室,1997 年),第 1-2 页。1-2;John V. Becker,《高速前沿:四个 NACA 计划的案例历史》(华盛顿特区:NASA SP-445,1980 年),特别是。第 95 页。这里应该指出,压缩性的首次研究涉及螺旋桨的尖端速度,日期为 1918 年至 1923 年。关于这些,请特别参阅 John D. Anderson, Jr. 的“超音速飞行研究和突破音障”,摘自《从工程科学到大科学:NACA 和 NASA 科利尔奖研究项目获奖者》,编辑。Pamela Mack(华盛顿特区:NASA SP-4219,1998 年),第66-68 页。本文还对约翰·斯塔克及其同事在 NACA 兰利纪念航空实验室对飞机(而不是螺旋桨)压缩性问题的早期研究进行了出色的报道。