图2:与替代性DSB测序技术相比,诱导seq表现出无与伦比的灵敏度和动态范围。(a)诱导seq同时检测高度复发的诱导DSB和低级内源性DSB,并以高分辨率。基因组浏览器视图(IgV)诱导seq读取映射到HEK293T细胞的10MB部分,随后与限制性核酸内核酸内切酶Hindiii进行原位裂解。(顶部面板)高度复发性酶诱导的断裂表示在低分辨率(10MB,0-1000读物)时的绝大多数读数。(底部面板)高分辨率视图(粉红色的亮点,500kb,0-20读取)显示出未处理样品中存在的低水平的单源性断裂,以及在复发性印度诱导的突破(绿色亮点)中。(b)诱导seq读取的映射在Hindiii目标位点显示了断裂两侧的单核苷酸断裂映射的精度。(c)对经过治疗和对照样品的每个细胞测量的断裂定量。诱导seq在样品之间的3个数量级上定量检测到每个细胞的断裂。(d和e)通过酶Hindiii和ecorv检测体外裂解限制位点时诱导seq和dsbapture之间的比较。(d)使用诱导seq映射到测序和对齐基因组的读取和对齐基因组的比例更大。(e)使用少800倍的细胞,诱导seq鉴定了与DSBCAPTURE确定的ECORV(93.7%)相似的Hindiii限制位点(92.7%)。(f)使用诱导seq的诱导DSB检测的动态范围。除了在印度内目标序列(AAGCTT)上鉴定出的断裂外,还确定了多个1BP和2BP不匹配靶向位点。诱导seq测得的诱导的休息事件,跨越了8个数量级,从在印度内靶标地点确定的约1.5亿次断裂到最少频繁的脱离目标的5个断裂。(g)在检测ASISI诱导的活细胞中诱导的疾病,DSBCAPTURE和BLISS之间的比较。将测序的读取数(顶部面板)与每个实验(底部面板)识别的ASISI位点的数量进行了比较。诱导seq使用比DSBCAPTUE少的40倍读数检测到最大数量的ASISI位点,而读取的读数比Bliss少23倍。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年3月6日发布。 https://doi.org/10.1101/2024.03.05.582227 doi:Biorxiv Preprint
通过基因敲击将有用的特征引入牲畜育种计划已被证明具有挑战性。通常,在细胞系中进行了靶向插入,然后进行体细胞核转移克隆,这可能是效率低下的。一种替代方法是引入基因组编辑试剂和同源重组(HR)供体模板中的胚胎,以触发同源性定向修复(HDR)。然而,HR途径主要仅限于主动分裂细胞(S/G2相),其在合子中引入大型DNA序列的效率很低。同源介导的末端连接(HMEJ)方法已被证明可以提高非分散细胞的敲击效率,并在直接注射胚胎后利用HDR。将GRNA/CAS9核糖核蛋白复合蛋白复合物与传统的HR供体模板或牛zygotes中的HMEJ模板相结合时,将1.8 kb基因的敲门效率对比。与HR模板相比,HMEJ模板的基因敲入速率明显更高(37.0%和13.8%; P <0.05)。此外,超过三分之一的敲入胚胎(36.9%)是非摩萨剂。这种方法将促进牛基因组特定位置的基因构建体的一步引入,并有助于下一代精英牛。
在《细胞》杂志发表的一项研究中,中国科学院脑科学与智能技术卓越创新中心朱树嘉团队与中国科学院上海药物研究所李阳团队解析了成年哺乳动物大脑皮层和海马体中内源性N-甲基-ᴅ-天冬氨酸受体(eNMDAR)的组装和结构。
超过40%的人类基因组由逆转录座子组成,DNA物种具有通过RNA中间体复制并与逆转录病毒相关的潜力。逆转录座子的研究能力最多,这可能会导致DNA损伤和新颖的插入突变。逆转录盆地编码的产物,包括病毒样蛋白,双链RNA和外肌体圆形圆形DNA,也可以是先天免疫系统的有效激活剂。越来越多的证据表明,逆转录座子在与年龄相关的神经退行性疾病中被激活,并且这种激活有因果关系有助于神经毒性。在这里,我们提供了逆转座子生物学的概述和概述与年龄相关的神经退行性疾病中逆转录跨座子激活的证据,重点是涉及TAR-DNA结合蛋白-43(TDP-43)和TAU的概述。迄今为止的研究为临床试验提供了基础,并对创新策略保持了希望,以减轻逆转录跨跨性别失调在神经退行性疾病中的不利影响。
摘要 CRISPR/Cas9 系统已用于在多种物种中通过同源定向修复生成荧光标记的融合蛋白。尽管它取得了革命性的成功,但仍然迫切需要提高研究生物中基因组编辑的简便性和效率。在这里,我们建立了一种简化、高效且精确的 CRISPR/Cas9 介导青鳉 (Oryzias latipes) 内源性蛋白质标记策略。我们使用一种无克隆方法,该方法依赖于 PCR 扩增的供体片段,该片段包含由短同源臂 (30-40 bp) 两侧的荧光报告序列、合成的单向导 RNA 和 Cas9 mRNA。我们生成了八个新的敲入系,具有高效的 F0 靶向和种系传递效率。全基因组测序结果显示仅在目标位点发生单拷贝整合事件。我们对这些融合蛋白系进行了初步表征,大大扩展了青鳉可用的遗传工具库。具体来说,我们表明 mScarlet-pcna 线具有作为增殖区的生物范围标签和内源性细胞周期报告基因的潜力。
摘要 — 非侵入式脑机接口 (BCI) 已被开发用于通过使用脑电图 (EEG) 信号来理解用户的意图。随着人工智能的发展,无人机控制系统也取得了许多进展。能够反映用户意图的 BCI 特性导致了基于 BCI 的无人机控制系统的出现。使用无人机群比使用单架无人机具有更多优势,例如任务多样性。特别是,基于 BCI 的无人机群控制可以为军事服务或行业灾难等各个行业提供许多优势。BCI 范式包括外生范式和内生范式。内生范式可以独立于任何刺激根据用户的意图进行操作。在本研究中,我们设计了专门用于无人机群控制的内生范式(即运动想象 (MI)、视觉想象 (VI) 和语音想象 (SI)),并进行了基于脑电图的与无人机群控制相关的各种任务分类。五名受试者参加了实验,并使用基本机器学习算法评估了表现。MI、VI 和 SI 的总平均准确率分别为 51.1% (± 8.02)、53.2% (± 3.11) 和 41.9% (± 6.09)。因此,我们证实了使用各种内生范式增加无人机群控制自由度的可行性。关键词-脑机接口;脑电图;无人机群控制;直觉范式
为了加速优良苹果品种的早期发育,建立加速从幼苗期向成年期过渡的技术至关重要。阐明这一阶段转变背后的生理机制将有助于开发确保早期阶段转变的苹果幼苗生长系统。在此,在受控条件下对无融合生殖海棠 Malus hupehensis (Pamp.) Rehd. 进行水培栽培,以探索其在阶段转变过程中的植物激素动态。在 57 株幼苗中,有 15 株在发芽后约 10 个月内开花。开花率为 26.3%。开花幼苗的平均高度和平均茎周长分别比未开花幼苗高 27 厘米和 0.56 厘米。开花幼苗主茎顶端成熟叶片中脱落酸浓度在 70 节时高于未开花幼苗,到 90 节时降至未开花幼苗以下。开花幼苗与未开花幼苗主茎顶端成熟叶片中 GA 4 和细胞分裂素浓度无显著差异。这些结果表明,在受控环境下采用水培有利于促进湖北地黄的早期阶段转变。此外,维持主茎顶端成熟叶片中较低的脱落酸浓度水平可促进湖北地黄的阶段转变。
此预印本的版权所有者此版本于 2023 年 9 月 26 日发布。;https://doi.org/10.1101/2023.09.25.559376 doi:bioRxiv preprint
在肠道中,上皮因子条件传入的免疫细胞,包括单核细胞,以适应其激活阈值并防止不需要的炎症。结肠上表达细胞表达分泌的白细胞蛋白酶抑制剂(SLPI),这是活化B细胞(NF-κB)的NF Kappa轻链增强子的抑制剂(NF-κB),可介导对微生物刺激。已经提出了单核细胞对细胞外SLPI的摄取来抑制单核细胞活化。我们质疑单核细胞是否可以产生SLPI以及内源性SLPI是否可以抑制单核细胞激活。我们证明了人类THP-1单核细胞产生SLPI,并且可以在人肠道层次中检测到CD68 + SLPI产生细胞。敲低人类THP-1细胞中SLPI显着增加了NF-κB激活,随后C-X-C基序趋化因子配体8(CXCL8)(CXCL8)和TNF-α产生,响应微生物刺激。与缺乏全长SLPI或SLPI缺乏信号肽的SLPI缺陷型细胞挽救了NF-κB激活和细胞因子产生的抑制作用,表明内源性SLPI抑制单核细胞细胞活化。出乎意料的是,尽管有效摄取,但外源SLPI并未抑制CXCL8或TNF-α产生。我们的数据表明,内源性SLPI可以调节单核细胞激活的阈值,从而防止粘膜组织中共生细菌激活。