内质网(ER)是一个巨大的,连续的膜网络(图1)在具有许多重要功能的细胞内。虽然核糖体在蛋白质合成中的作用而闻名,但肾小管或“光滑” ER(Ser,没有核糖)在很大程度上致力于生物合成和脂质和钙的代谢(CA2 +)掌位的生物合成和代谢。这些脂质,蛋白质和离子必须在正确的时间分布在其他膜上,以允许其他细胞器的正确功能,并且对于细胞信号传导至关重要。脂质转运是由Secretory途径(例如囊泡和管状载体)以及在ER和其他膜细胞器之间形成的所谓膜接触位点(MCS)介导的。MCS由两个相反的膜组成,它们通过狭窄的间隙进行通信,通常在10至30 nm之内(Wong and Others 2019),并依赖于蛋白质蛋白质和蛋白质脂质相互作用。MCS可以组成构成,也可以根据信号事件或膜组成改变而动态形成。在MCS,束缚因子,脂质转移蛋白,酶和离子通道协同作用,以促进离子,脂质和其他小分子的局部流动。是
糖尿病性视网膜病(DR)是糖尿病(DM)普遍的微血管并发症(DM),在大约三分之一的糖尿病患者中有助于视觉障碍(1)。它是糖尿病最严重的并发症之一,尤其是在发展到增殖性糖尿病性视网膜病(PDR)时(2,3)。PDR的特征是视网膜中血管异常的生长,导致视力丧失和失明的潜力(4)。向PDR过渡的基础的复杂分子机制仍然是强烈的研究意义的主题。了解与PDR相关的基因表达模式和免疫景观对于揭示其发病机理的复杂性并识别潜在的治疗靶标至关重要。内质网(ER)用作负责蛋白质稳态或“蛋白质稳态”的细胞细胞器(5)。细胞应激和炎症可能会导致构建不折叠或错误折叠的蛋白质,这种疾病称为ER应激(6)。促成PDR发病机理的基本分子机制之一是ER应力(7)。尽管在PDR中,ER应力具有公认的重要性,但在PDR背景下,对与ER应力相关的生物标志物的全面分子理解仍然是显着的研究差距(8-10)。近年来,对与ER应力相关生物标志物的复杂性的分子研究为理解PDR的分子基础提供了有希望的途径(5、11、12)。高通量技术的进步已彻底改变了我们剖析复杂疾病分子景观的能力(13)。与PDR中的ER应力相关的特定生物分子特征,不仅具有加深我们对疾病机制的理解的潜力,而且还具有确定治疗性干预的精确靶标。尽管在糖尿病研究中取得了重大的进步,但我们对驱动PDR进展的特定分子事件的理解仍然存在差距。通过分析GSE102485数据集中的PDR患者样品的转录组预计和正常样品,我们研究了与PDR中的ER应力相关的差异表达基因(DEGS)。通过基因本体论(GO)富集分析,基因和基因组(KEGG)途径分析的京都百科全书和蛋白质 - 蛋白质相互作用(PPI)网络分析,我们的目标是增强我们对eRECTORCONT PRESSTAINS PRESATION IN pDR的ERCORECTONCOULAL生物标志物的分子特征。通过字符串,细胞尺度和细胞胡示使鉴定了六个关键基因,并在单独的数据集(GSE60436)和DR模型中使用体外定量实时聚合酶链反应(QRT-PCR)进行了进一步验证。此外,我们探索了这些中心基因与插入中免疫细胞水平之间的相关性,揭示了ER应力在PDR中的免疫调节作用。最后,使用连接图(CMAP)预测用于处理PDR的潜在小分子。该分析的目的是鉴定具有潜在治疗作用的药物,可以通过调节与ER应力相关的分子途径来干预PDR的发展。这项研究桥接了分子生物学和DR研究,旨在剖析指示PDR和SHED
背景:最近,纳米催化剂诱导的癌症治疗的内质网(ER)应激吸引了很大的关注。然而,癌细胞通常能够通过激活展开的蛋白质反应(UPR)来克服ER应激诱导的死亡,从而使纳米催化单一疗法成为针对癌症进展的不良防御。目的:在这项研究中,为了提高纳米催化处理功效,使用相变材料(PCM)封装上游ER应力引发剂,氧化铁纳米颗粒(Fe 3 O 4 NP)和下游UPR调节剂PR-619。随后,将肿瘤的肽tlyp-1耦合在一起,形成tlyp-1/pr-619/fe 3 o 4 @pcm(tpf @pcm)theranostic平台。材料和方法:tpf@pcm是使用纳米沉淀和分辨率方法合成的,然后是EDC/NHS交联方法。分别使用流式细胞仪和磁共振成像在体外和体内评估TPF@PCM的靶向能力。在肾细胞癌小鼠模型中研究了TPF@PCM的治疗功效。此外,我们通过检查细胞内活性氧(ROS),聚集的Pro Teins,ER应激反应水平和细胞死亡类型来探索协同的抗肿瘤机制。结果:TPF@PCM具有出色的肿瘤靶向特性,并且在体外和体内表现出令人满意的光热肿瘤抑制功效。具体而言,使用808 nm激光辐射维持的相变温度(45°C)显着增加了过氧化物酶模拟于3 O 4 NP的释放和催化活性。通过酸性肿瘤微环境中的芬顿反应,这强烈催化了羟基自由基(•OH)的产生。氧化还原不平衡随后导致ER中受损蛋白质受损水平的升高并启动ER应激。此外,泛素化酶抑制剂PR-619阻止了这些受损蛋白的“自适应” UPR介导的降解,从而加剧了ER负担。因此,不可抑制的ER应力激活了“末端” UPR,导致癌细胞凋亡。结论:这种ER应激效果策略有效地抑制了肿瘤的发生,为治疗常规治疗耐药性癌症提供了新的方向。关键词:内质网应激,展开的蛋白质反应,纳米催化医学,活性氧,去泛素酶抑制剂,凋亡
摘要:镉(CD)是一种重金属污染物,由于工业活动,采矿和农业实践,在环境中广泛分布。镉诱导的毒性通过多种机制对ER功能产生深远的影响,从而导致细胞功能障碍和病理后果。镉会破坏蛋白质折叠并激活展开的蛋白质反应(UPR)。CD暴露会导致错误折叠蛋白的积累,从而触发由临界ER跨膜传感器介导的UPR途径:IRE1,PERK和ATF6。随后的UPR旨在恢复ER稳态,但也可以在严重的压力条件下诱导凋亡。CD通过抑制SERCA泵来破坏ER钙稳态,从而进一步加剧了ER应力。活性氧的产生(ROS在CD毒性中也起着至关重要的作用,损坏了ER居住的蛋白质并扩增UPR激活)。镉也会影响脂质代谢。本综述研究了CD毒性会损害ER功能,蛋白质折叠和质量控制机制以及钙信号传导和脂质代谢失调的机制。在CD诱导的疾病(如癌症,神经退行性和心血管疾病)的发病机理中讨论了随后的细胞后果,包括氧化应激,凋亡和炎症。最后,必须探索潜在的治疗策略,以使CD对ER功能和人类健康的不利影响。
糖尿病(DM)是一种慢性疾病,其特征是葡萄糖稳态受损,是由于胰腺B细胞的损失或功能障碍导致1型糖尿病(T1DM)和2型糖尿病(T2DM)的损失或功能障碍。胰腺B细胞在很大程度上依赖其内质网(ER)来克服秘书长对胰岛素生物合成和分泌的需求增加,以应对营养需求,以维持体内的葡萄糖稳态。结果,在循环中营养水平上升后,B细胞可能在ER应力下,以介导由展开的蛋白质反应(UPR)介导的适当的前胰岛素折叠,强调了该过程对正常B -Cell功能保持ER稳态的重要性。然而,过度或长时间增加了新生促硫素进入ER腔内的炎症可能会超过导致胰腺B细胞ER应力的ER能力,然后导致B细胞功能障碍。在哺乳动物细胞(例如B细胞)中,ER应力反应主要由三种规范的ER居民跨膜蛋白:ATF6,IRE1和PERK/PEK调节。这些蛋白质中的每一个分别产生转录因子(分别为ATF4,XBP1S和ATF6),进而激活了ER应力诱导基因的转录。越来越多的证据表明,未解决或失调的ER应力信号通路在B细胞衰竭中起关键作用,导致胰岛素分泌缺陷和糖尿病。In this article we fi rst highlight and summarize recent insights on the role of ER stress and its associated signaling mechanisms on b -cell function and diabetes and second how the ER stress pathways could be targeted in vitro during direct differentiation protocols for generation of hPSC-derived pancreatic b -cells to faithfully phenocopy all features of bona fi de human b -cells for diabetes therapy or drug screening.
心肌梗死 (MI) 是世界范围内的重要死亡原因 [1]。由于现代治疗选择,MI 的死亡率一直在下降,MI 幸存者的数量也在不断增加 [2]。其中许多人随后出现心力衰竭 (HF) 的症状 [3,4]。心肌细胞因缺血死亡后,HF 的发展与不良的左心室重塑有关,导致功能丧失 [5,6]。高脂饮食 (HFD) 可通过心脏肥大、心肌细胞凋亡和间质纤维化等机制加剧 MI 后的重塑 [7,8]。实验研究表明,HFD 显著加剧老年大鼠的高血压心脏病,导致心房和心室重塑恶化以及相关的左心室收缩功能受损 [9]。此外,仅 12 周的 HFD 就会对心脏功能产生不利影响,这通过左心室斑点追踪成像 [10] 进行测量,该参数能够检测亚临床左心室。不幸的是,最近的临床研究表明,人类高脂肪产品的消费量一直在稳步增加 [11]。在 HF 的背景下,人们对亚硝化/氧化应激、炎症和内质网应激进行了很多讨论 [12-15]。然而,对于 HFD 对 HF 中这些过程的影响知之甚少。亚硝化/氧化应激是指当氧代谢紊乱时,一氧化氮 (NO) 和活性氧物质之间的生化反应。该过程导致活性氮物质 (如过氧亚硝酸根阴离子) 的产生,从而导致蛋白质硝化和损伤 [16]。这种损伤的标志是 3-硝基酪氨酸 (3-NT) [17]。一氧化氮合酶 (NOS) 催化一氧化氮的产生,一氧化氮合酶有三种亚型:诱导型一氧化氮合酶 (iNOS)、内皮型一氧化氮合酶 (eNOS) 和神经元型一氧化氮合酶 (nNOS) [18]。这些亚型在心血管健康和疾病中发挥着至关重要的作用。iNOS 在正常心脏组织中的表达水平非常低 [19]。炎症会导致 iNOS 活化和过表达,这会对心脏造成有害影响,而转基因动物中 nNOS 和 eNOS 的过表达会改善心肌梗死后的心脏功能 [20]。髓过氧化物酶 (MPO) 在炎症反应中起着至关重要的作用 [21]。它主要在中性粒细胞和单核细胞中表达。MPO 催化产生次氯酸,一种强效氧化剂 [22]。此外,这种蛋白质还可以直接参与活性氮物质的形成。循环中 MPO 水平升高与炎症和氧化应激有关 [ 23 ]。此外,最近的荟萃分析表明 MPO 可作为 HF 诊断的有价值标志物 [ 24 ]。当错误折叠或未折叠的蛋白质压倒内质网(内质网是蛋白质折叠和脂质生物合成的关键细胞器)时,就会发生内质网应激。如前所述,亚硝化/氧化应激会影响蛋白质折叠过程并导致内质网应激 [ 25 , 26 ]。后者会激活未折叠蛋白反应 (UPR),这是一种复杂的信号网络,旨在恢复蛋白质稳态或在不可能的情况下促进细胞凋亡。该过程在
摘要。内质网(ER)是用于蛋白质合成,折叠和修饰,脂质合成和钙储存的必不可少的细胞器。当内源性或外源性刺激导致ER合成的蛋白质折叠功能障碍时,许多展开或错误折叠的蛋白会积聚在ER腔中,并引起一系列随后的反应,称为ER应激。如果ER应力是连续的,则展开的蛋白质反应(UPR)不足以去除累积的展开和错误折叠的蛋白质,因此,UPR信号通路将驱动细胞凋亡。胶质母细胞瘤(GBM)目前是神经系统中最具侵略性和最常见的恶性肿瘤。由于ER应力可能会增加GBM对替莫唑胺的敏感性,因此本文回顾了ER应激诱导的凋亡的可能机制和影响ER应激的因素,并评估了ER应激作为治疗靶标的潜力。
5 Shahid Beheshti医学科学大学,伊朗,伊朗,6喀山(沃尔加地区)联邦大学6喀山,俄罗斯喀山,伊朗7大学,伊朗伊朗医学科学大学7号,伊朗8号,伊朗8号学生研究委员会,塔比里兹医学科学大学,伊朗,伊朗,伊朗,医学委员会9 Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran, 11 Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran, 12 PhD Student in Health Education and Health Promotion, Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran, 13 School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran,伊朗,伊朗的14号通用科学教育与研究网络(USERN),伊朗,伊朗,15,伊朗,伊朗,伯里兹医学科学大学医学院15,伊朗,16个学生研究委员会,Zanjan Medical Sciences,Zanjan,Zanjan,伊朗,伊朗