摘要:活性氧(ROS)是自由基氧中间体,在信号转导中是重要的第二使者。但是,当这些分子的积累超过抗氧化剂酶的缓冲能力时,会发生氧化应激和内皮细胞(EC)功能障碍。ec功能障碍将血管系统转变为促凝的,促进的炎症状态,从而增加患心血管疾病(CV)疾病和代谢疾病的风险。研究已转向对CV风险因素的microRNA处理的研究,因为这些转录后调节剂已知可以共同调节ROS。在这篇综述中,我们将讨论ROS途径和产生,正常的内皮细胞生理学和ROS诱导的功能障碍,以及当前对常见代谢性疾病的知识及其与氧化应激的联系。还将探索基于microRNA的治疗策略,以响应氧化应激和microRNA在控制ROS中的调节作用。重要的是要深入理解产生ROS的机制以及如何操纵这些酶促副产品可以保护内皮细胞功能免受氧化应激的影响并防止血管疾病的发展。
在美国,超过 420 万 40 岁以上的人患有无法矫正的视力障碍和失明。老年性黄斑变性 (AMD)、青光眼、白内障和糖尿病性视网膜病变是美国成年人口中最常见的眼部疾病。AMD 是 65 岁及以上人群阅读和精细或近距离视力永久性受损的主要原因。血管内皮生长因子 (VEGF) 与多种眼部血管疾病的发病机制有关,这些疾病的特征是脉络膜新生血管 (CNV) 和黄斑水肿。VEGF 是一种刺激血管内皮细胞生长、增殖和存活的蛋白质。几种眼用 VEGF 抑制剂已被批准用于治疗各种眼部疾病。
1。McKay骨科研究实验室,宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学骨科外科系2. 宾夕法尼亚州费城宾夕法尼亚大学生物工程系3. 圣路易斯华盛顿大学的细胞生物学与生理学系,圣路易斯,密苏里州4。 乔治·W·伍德拉夫机械工程学院,乔治亚州理工学院,亚特兰大,佐治亚州5。 新泽西州格拉斯伯勒的罗文大学生物医学工程系6。 化学与生物分子工程系,约翰·霍普金斯大学,巴尔的摩,马里兰州7。 生物浮力研究所和化学与生物工程系,科罗拉多大学博尔德大学,博尔德,科罗拉多州,co *,请与A.Stratman@wustman@wustl.edu或Joel Boerckel博士联系,请与Amber Stratman博士联系,或以boerckel@pennmedicine.upenn.upenn..edu联系。 抽象的血管形态发生需要持续的内皮细胞运动,这对多样化和动态的机械刺激有反应。 在这里,我们询问了控制内皮细胞运动和血管形态发生的机械转换反馈动力学。 我们表明,转录调节剂YAP和TAZ通过机械提示激活,以转录限制细胞骨架和局灶性粘附成熟,形成一种保守的机械转移反馈回路,从而介导了人类内皮细胞的植物内皮细胞在vitro和Zebrafish Insplafish(Zebrafish)中的内皮细胞运动,并介导了Zebrafish Pressemplafish Pressemplafish(Isv)。 此反馈回路在4小时内关闭,在8小时内实现细胞骨架平衡。 反馈回路抑制在体内滞留的内皮细胞迁移和体内ISV形态发生。McKay骨科研究实验室,宾夕法尼亚州宾夕法尼亚州宾夕法尼亚大学骨科外科系2.宾夕法尼亚州费城宾夕法尼亚大学生物工程系3.圣路易斯华盛顿大学的细胞生物学与生理学系,圣路易斯,密苏里州4。 乔治·W·伍德拉夫机械工程学院,乔治亚州理工学院,亚特兰大,佐治亚州5。 新泽西州格拉斯伯勒的罗文大学生物医学工程系6。 化学与生物分子工程系,约翰·霍普金斯大学,巴尔的摩,马里兰州7。 生物浮力研究所和化学与生物工程系,科罗拉多大学博尔德大学,博尔德,科罗拉多州,co *,请与A.Stratman@wustman@wustl.edu或Joel Boerckel博士联系,请与Amber Stratman博士联系,或以boerckel@pennmedicine.upenn.upenn..edu联系。 抽象的血管形态发生需要持续的内皮细胞运动,这对多样化和动态的机械刺激有反应。 在这里,我们询问了控制内皮细胞运动和血管形态发生的机械转换反馈动力学。 我们表明,转录调节剂YAP和TAZ通过机械提示激活,以转录限制细胞骨架和局灶性粘附成熟,形成一种保守的机械转移反馈回路,从而介导了人类内皮细胞的植物内皮细胞在vitro和Zebrafish Insplafish(Zebrafish)中的内皮细胞运动,并介导了Zebrafish Pressemplafish Pressemplafish(Isv)。 此反馈回路在4小时内关闭,在8小时内实现细胞骨架平衡。 反馈回路抑制在体内滞留的内皮细胞迁移和体内ISV形态发生。圣路易斯华盛顿大学的细胞生物学与生理学系,圣路易斯,密苏里州4。乔治·W·伍德拉夫机械工程学院,乔治亚州理工学院,亚特兰大,佐治亚州5。新泽西州格拉斯伯勒的罗文大学生物医学工程系6。化学与生物分子工程系,约翰·霍普金斯大学,巴尔的摩,马里兰州7。生物浮力研究所和化学与生物工程系,科罗拉多大学博尔德大学,博尔德,科罗拉多州,co *,请与A.Stratman@wustman@wustl.edu或Joel Boerckel博士联系,请与Amber Stratman博士联系,或以boerckel@pennmedicine.upenn.upenn..edu联系。抽象的血管形态发生需要持续的内皮细胞运动,这对多样化和动态的机械刺激有反应。在这里,我们询问了控制内皮细胞运动和血管形态发生的机械转换反馈动力学。我们表明,转录调节剂YAP和TAZ通过机械提示激活,以转录限制细胞骨架和局灶性粘附成熟,形成一种保守的机械转移反馈回路,从而介导了人类内皮细胞的植物内皮细胞在vitro和Zebrafish Insplafish(Zebrafish)中的内皮细胞运动,并介导了Zebrafish Pressemplafish Pressemplafish(Isv)。此反馈回路在4小时内关闭,在8小时内实现细胞骨架平衡。反馈回路抑制在体内滞留的内皮细胞迁移和体内ISV形态发生。抑制剂在3小时的抑制剂清除之前,在反馈回路闭合之前,恢复了血管的生长,但在8小时时冲洗,比反馈时间尺度更长,在Vivo中为反馈动力学建立了上限和上限。从机械上讲,YAP和TAZ诱导了RhoA信号传导的转录抑制,以维持动态细胞骨架平衡。在一起,这些数据建立了
摘要SARS-COV-2(严重的急性呼吸综合征冠状病毒2)是一种新兴的病原体,在人类种群中迅速扩散。严重的感染形式辅助细胞因子释放综合征和由于过度炎症反应引起的急性肺损伤,即使已经实现了病毒清除率。炎症的关键成分包括感染组织中的免疫细胞募集,这是在内皮细胞控制下的步骤。在这里,我们回顾了由于SARS-COV-2引起的炎症和感染中的内皮细胞反应,以及与它们相互作用的单核细胞,T和B淋巴细胞的表型和功能改变。我们推测,内皮细胞是募集的各种细胞的综合和活跃平台,在这种平台上进行了免疫反应进行微调,并为治疗干预提供了机会。
。CC-BY 4.0 国际许可(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 3 日发布。;https://doi.org/10.1101/2025.01.03.631070 doi:bioRxiv 预印本
肉桂酸 (CA) 具有重要的心血管作用,如保护心脏、抗动脉粥样硬化、抗高血脂和抗氧化,这预示着它在高血压治疗中具有潜在作用。这项研究旨在调查 CA 在 Sprague Dawley (SD) 大鼠中的抗高血压潜力,随后对其进行评估,以了解其在各种血管制剂中的作用。在麻醉状态下,对正常血压和高血压大鼠采用侵入性血压监测技术。使用来自大鼠和兔子的分离主动脉环、Langendorrf 灌注的兔离体心脏和豚鼠右心房来探究潜在机制。使用连接到 PowerLab 数据采集系统的压力和力传感器记录反应。静脉注射 CA 分别导致高血压大鼠和正常血压大鼠的平均动脉压 (MAP) 下降 54% 和 38%。在大鼠主动脉环中,CA 表现出毒蕈碱受体相关的 NO 和吲哚美辛敏感的内皮依赖性 ( > 50%) 和钙拮抗剂以及 K ATP 介导的内皮非依赖性血管扩张作用。CA 在豚鼠心房条中表现出负性肌力和变时性作用。CA 抑制心室收缩力和心率,同时导致冠状动脉流量增加 25%。这项研究支持了 CA 作为抗高血压药物的药用重要性。
。CC-BY 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2025 年 1 月 22 日发布了此版本。;https://doi.org/10.1101/2025.01.22.634222 doi:bioRxiv 预印本
fi g u r e 1在BEC中的衰老程序表征。(a)研究设计的示意图。(b – d)衰老标记物的代表性图像p21 +(b),p16 +(c)和hmgb1-(d)在BBB的Hippocampus在老年小鼠的海马中,有无治疗。。glut1(绿色)对染色BEC和HMGB1。比例尺:( b,d)50和20μm(农作物),(c)50和25μm(农作物)。对年轻小鼠和老年小鼠的p21(b.1),p16(c.1)阳性的GLUT1 +细胞百分比和HMGB1(d.1)阳性的量化百分比。对P21(B.2),P16(C.2)阳性的GLUT1 +细胞百分比的定量和HMGB1(d.2)的阳性量化量,在有或没有鼻溶剂治疗的老年小鼠中。每个点代表了分析的所有动物分析的所有场(3,4)的平均值[:3 m =男性,3f =雌性,年龄未治疗(8 m,6f),AP(8 m,2f),DQ(7 m),dq(7 m),闭合符号,闭合符号=男性和开放式符号=女小鼠=女小鼠]。结果是平均值±SEM。(f)在老年墨水 - 塔克小鼠海马的白蛋白(绿色)和Glut1(红色)免疫染色的代表性图像(分别为AP处理和车辆)。比例尺:50μm。 (F.1,F.2)定量年轻人与车辆与AP处理的动物中白蛋白荧光强度的定量。每个点代表了分析的所有动物[Young(3 m,1f),未治疗(4 m,3f),AP(3 m,4f),闭合符号=男性和开放符号=雌性小鼠]的所有场(4-6)的平均值(4-6)。结果是平均值±SEM。使用未配对的学生的t检验进行统计分析( * p <0.05, * p <0.05; ** p <0.01)。(e)P21 + ECS Young的TSNE图与来自三个数据集的Old:GSE129788,GSE146395和GSE14763。颜色梯度代码:灰色至红色表示低至高表达值。
区域内皮细胞异质性是鼠肾血管发育的基础。Peter M Luo 1† , Neha Ahuja 1† , Christopher Chaney 1,3 , Danielle Pi 4 , Aleksandra Cwiek 5 , Zaneta Markowska 5 , Chitkale Hiremath 2,3 , Denise Marciano 2,3 , Karen K Hirschi 5 , M Luisa Iruela-Arispe 4 , Thomas J Carroll 3 , and Ondine Cleaver 1 * 1分子生物学系2个细胞生物学系和德克萨斯大学西南医学中心的3号内科,5323 Harry Hines Blvd.4美国西北大学Feinberg医学院的细胞与开发生物学系,美国伊利诺伊州60611,美国;罗伯特·H·卢里(Robert H. Lurie)综合癌症中心,美国伊利诺伊州芝加哥西北大学费恩伯格医学院,美国伊利诺伊州60611。 5弗吉尼亚大学医学院,夏洛茨维尔大学医学院。 罗伯特·伯恩(Robert M. Berne)心血管研究中心,弗吉尼亚大学夏洛茨维尔大学医学院。4美国西北大学Feinberg医学院的细胞与开发生物学系,美国伊利诺伊州60611,美国;罗伯特·H·卢里(Robert H. Lurie)综合癌症中心,美国伊利诺伊州芝加哥西北大学费恩伯格医学院,美国伊利诺伊州60611。5弗吉尼亚大学医学院,夏洛茨维尔大学医学院。罗伯特·伯恩(Robert M. Berne)心血管研究中心,弗吉尼亚大学夏洛茨维尔大学医学院。
腺相关病毒(AAV)开发方面取得的最新进展已产生能够比自然产生的衣壳更有效地转导中枢神经系统(CNS)中明确定义的细胞群的工程衣壳 1 – 7 。作为一种快速灵活的体内基因转移平台,这些载体与现有的小鼠遗传学工具结合使用(或替代)时,有望充当研究的变革催化剂。然而,衣壳的开发主要集中于设计用于转导神经元或星形胶质细胞的载体。相比之下,尽管人们逐渐认识到大量非神经元细胞类型对神经系统功能至关重要,但描述专门针对 CNS 内其他细胞群的载体相对较少。其中,中枢神经系统内皮细胞(排列在血管腔面的特化细胞)已被证明能够协调许多关键的生理过程。此外,人们越来越认识到它们的功能障碍是导致多种神经退行性疾病和神经系统疾病的原因 8、9。虽然内皮细胞通常被视为相对同质的实体,但最近的研究强调了脑血管动静脉轴的分子和功能惊人程度的特化 10。例如,动脉内皮细胞在动态耦合血流和神经活动以满足局部能量需求方面起着关键作用 11-13,毛细血管内皮细胞主动抑制细胞间运输以维持血脑屏障完整性 14-16,静脉内皮细胞似乎在神经免疫串扰中充当重要中介 9、17、18。然而,内皮细胞的扩张功能与可用于在体内研究它们的相对有限的工具之间的不匹配是研究进展的主要障碍。一种高效的、具有广泛向性的内皮特异性载体,涵盖动脉、毛细血管和静脉内皮细胞,非常适合加速神经血管研究。